

 INL is a U.S. Department of Energy National Laboratory operated by Battelle Energy Alliance, LLC

INL/EXT-21-62050
Revision 0

Development of the IES Plug-

and-Play Framework

March | 2021

Konor L Frick

Andrea Alfonsi

Cristian Rabiti

Shannon Bragg-Sitton

Idaho National Laboratory

DISCLAIMER

This information was prepared as an account of work sponsored by an

agency of the U.S. Government. Neither the U.S. Government nor any

agency thereof, nor any of their employees, makes any warranty, expressed

or implied, or assumes any legal liability or responsibility for the accuracy,

completeness, or usefulness, of any information, apparatus, product, or

process disclosed, or represents that its use would not infringe privately

owned rights. References herein to any specific commercial product,

process, or service by trade name, trade mark, manufacturer, or otherwise,

does not necessarily constitute or imply its endorsement, recommendation,

or favoring by the U.S. Government or any agency thereof. The views and

opinions of authors expressed herein do not necessarily state or reflect

those of the U.S. Government or any agency thereof.

INL/EXT-21-62050
Revision 0

Development of the IES Plug-and-Play Framework

Konor L Frick
Andrea Alfonsi
Cristian Rabiti

Shannon Bragg-Sitton
Idaho National Laboratory

March 2021

Idaho National Laboratory
Integrated Energy Systems

Idaho Falls, Idaho 83415

http://www.ies.gov

Prepared for the
U.S. Department of Energy
Office of Nuclear Science

Under DOE Idaho Operations Office
Contract DE-AC07-05ID14517

Page intentionally left blank

 iii

ABSTRACT

Since early 2013, to accommodate the vast array of possibilities introduced by the concept of

integrated energy parks that could incorporate multiple energy generation sources and multiple

energy users, Idaho National Laboratory (INL) has been developing a library of high-fidelity

process models in the Modelica modeling language. These models are a cornerstone of the

analysis and optimization tools developed via the Department of Energy Office of Nuclear

Energy (DOE-NE) Integrated Energy Systems (IES) program, led by Idaho National Laboratory

(INL). Models are used to create and characterize system inertia, thermal losses, and the

efficiency of integrated systems. These physical models help map physical performance into

economic performance, allowing for system-level optimization. In addition, the models are used

to test innovative system-level control strategies for interconnected thermal generators.

However, for real-world applications, it is not always practical to develop a model or rewrite

an existing model in Modelica; instead, interoperability with Legacy FORTRAN, C, Python, or

other codes is required. To accomplish this interoperability the IES Program is seeking to modify

the existing suite of physical models, currently held in the HYBRID physical modeling

repository, to be consistent with a “plug-and-play” approach in Modelica/Dymola models using

Functional Mock-Up Units (FMUs), Functional Mock-Up Interfaces (FMIs), and machine-

learning techniques. The models developed are held within the HYBRID repository that is part

of the IES Framework for Optimization of ResourCes and Economics ecosystem (FORCE).

This report provides an overview of all the performed activities revolving around the

deployment of methods, software infrastructures, guidelines, and a workflow for the construction

and usage of models, as encapsulated using the FMI/FMU protocols and standards. The report is

organized into three main macro-subjects, all of which are interconnected:

• FMI/FMU adaptors for Modelica models

• The HYBRID repository’s new structure and open-source deployment

• RAVEN FMI/FMU exporting capabilities and artificial-intelligence (AI)-based analysis

acceleration.

 The first part of the report discusses the FMI/FMU adaptors created within the HYBRID

repository to allow users to quickly export models such as FMUs. Several examples are given,

highlighting the step-by-step process of converting an existing Modelica model into an FMU for

use within the Dymola platform. Simulation results demonstrate that, though minor differences

may occur, overall control, trends, and solution integrity are maintained between the standard

Modelica simulation and FMU simulation results. However, it is worth noting that, for small

systems, the FMU requires a longer simulation time than the Modelica-only simulation. Using

this process, a company can provide external entities with models that contain proprietary

information, without disclosing any model-related information that could be considered business

sensitive. Such an ability would allow institutions to bypass the necessity of having

“whitewashed” data.

In the second part of the report, the new structure of the HYBRID repository is discussed,

with a major focus on the series of completed updates. These updates include the addition of

Modelica system-level regression tests and software quality assurance (SQA) documentation to

ensure that modifications to the Modelica models do not alter system-level model results.

 iv

The third and final part of the report documents the work performed for deploying methods

and workflows to construct RAVEN AI-based models that are compliant with the FMI/FMU

standard. Such work is key for deployment of the “flexible ecosystem” concept, since it allows

for the replacement of high-fidelity Modelica models (or any other FMI/FMU-compliant model)

with RAVEN-generated AI surrogate models.

Overall, extensive work has been completed in regard to developing FMUs and FMIs from

existing models, understanding the requirements and limitations of FMUs, and open-sourcing the

HYBRID repository with an integrated regression system for use within FORCE.

 v

Page intentionally left blank

 vi

CONTENTS
ABSTRACT ...iii

ACRONYMS ... xii

1. INTRODUCTION ... 1

2. FUNCTIONAL MOCK-UP INTERFACES AND UNITS ... 4

2.1 Co-simulation.. 5

2.2 Model Exchange ... 6

2.3 Advantages of Each Protocol .. 6

3. MODELICA TO FMU ADAPTATION .. 7

3.1 Adaptors .. 7

Fluid Port Adaptors ... 10

Thermal Port Adaptors.. 13

Electrical Port Adaptors .. 19

3.2 FMI Construction Guide ... 20

Model Preparation... 21

Adaptors .. 22

Export 23

Import 24

Simulation ... 26

3.3 Turbine Replacement Example ... 28

4. HYBRID REPOSITORY... 31

5. DEPLOYMENT OF A RAVEN FMI/FMU DRIVER .. 37

5.1 RAVEN Introduction .. 37

5.2 RAVEN Models .. 38

6. DEPLOYMENT OF RAVEN FMI/FMU EXPORTER FOR AI-BASED ANALYSIS

ACCELLERATIONS .. 44

6.1 RAVEN AI construction ... 45

6.2 Development of FMI/FMU exporting capabilities for RAVEN AI 46

6.3 Future Extension of the FMI/FMU Exporter to the RAVEN Hybrid Model 48

7. Integrated Energy Park Demonstration Case ... 49

7.1 FMI/FMU Creation and Use within Dymola .. 50

7.2 Creation of Surrogate Using RAVEN .. 54

7.3 Comparison of Results .. 56

8. CONCLUSION .. 60

9. FUTURE WORK ... 61

10. REFERENCES .. 63

 vii

APPENDIX A – HYBRID USER MANUAL... 66

APPENDIX B – SQA: SOFTWARE QUALITY ASSURANCE PLAN (SQAP) 114

APPENDIX C – SQA: SOFTWARE DESIGN DESCRIPTION (SDD) .. 140

APPENDIX D – SQA: HYBRID SOFTWARE REQUIREMENTS SPECIFICATION AND

TRACEABILITY MATRIX (SPC) ... 164

APPENDIX E – SQA: HYBRID CONFIGURATION ITEM LIST... 185

FIGURES

Figure 1. Example IES architecture, illustrating thermal and electrical interconnection to support

hydrogen production and chemical conversion. .. 1

Figure 2. Plug-and-play framework environment. .. 3

Figure 3. Co-simulation FMI/FMU scheme. ... 5

Figure 4. Model exchange FMI/FMU scheme. ... 6

Figure 5. Fluid ports (note that “ports” are a container method in Modelica used to transfer

several pieces of physics-based information within a single “connector”). 8

Figure 6. Transition from a Modelica physical model into an FMU. .. 9

Figure 7. FMU template folder location within the larger Nuclear Hybrid Energy Systems

(NHES) folder as part of the HYBRID Repository. .. 9

Figure 8. (Left) PressuretoMassFlow adaptor. This adaptor is best connected to a resistance port

able to set the output mass flow rate. (Right) MassFlowtoPressure adaptor. This adaptor

is best connected to a volume port able to set the output pressure. Note: Both of these

adaptors were created by Modelon for use in the INL plug-and-play framework as part

of an FMI/FMU course subcontract. ... 10

Figure 9. An example (using adaptors) involving two pressure sources using moist air, one of

which oscillates in pressure, causing a mass flow reversal. The unit in the red box will

become an FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure

frequency oscillation placed on pressure_source). .. 11

Figure 10. Example of a reversible flow using two pressure sources, moist air, and a model

exchange FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure

frequency oscillation placed on pressure_source). .. 12

Figure 11. Example of a reversible flow using two pressure sources, moist air, and a co-

simulation FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure

frequency oscillation placed on pressure_source). .. 12

Figure 12. Comparison of mass flow to the pressure sink across the original model, model

exchange FMU, and co-simulation FMU (timestep = 0.02 seconds). ... 13

Figure 13. (Left) GeneralTemperatureToHeatFlow adaptor for use in the INL plug-and-play

framework. (Right) GeneralHeatFlowToTemperature adaptor for use in the INL plug-

and-play framework. (T=temperature, dT = first derivative of temperature, d2T =

second derivative of temperature, Q = heat flow, der(Q) = first derivative of heat flow,

der2(Q) = second derivative of heat flow.) Note: only T and Q are required the

derivative values are optional for stability. ... 14

 viii

Figure 14. Example meant to demonstrate the FMU variants available with the thermal FMU

adaptors. The upper part demonstrates how to export two heat capacitors and connect

them together in a target system. The lower part demonstrates how to export a

conduction element that only requires temperatures for its conduction law, and

connects this conduction law to both heat capacitors in a target system. 15

Figure 15. Demonstration of an FMU variant example that uses model exchange FMUs for the

thermal heat port adaptors. .. 16

Figure 16. Collapse of the upper part of Figure 14 into a single FMU for co-simulation. This is

required because the frequency between the direct and inverse conduction problem is

so fast that a single cut between the two could not be made without instabilities

occurring. ... 16

Figure 17. Upper model of Figure 14 connected with the combined direct/inverse co-simulation

FMU. ... 17

Figure 18. Lower model of Figure 14, co-simulation FMU. ... 17

Figure 19. Direct/inverse simulation results for the original, model exchange, and co-simulation

(communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the

capacitor. (Bottom) Capacitor 3b temperature. ... 18

Figure 20. Conduction (lower model) simulation results for the original, model exchange, and co-

simulation (communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into

the capacitor. (Bottom) Capacitor 3b temperature. ... 19

Figure 21. (Left) GeneralFrequencyToPowerFlow adaptor for use in the INL plug-and-play

framework. (Right) GeneralPowerFlowToFrequency adaptor for use in the INL plug-

and-play framework. (Red circle represents the electrical port, with inputs and outputs

equal to the aforementioned variables in the section). .. 20

Figure 22. Incorrect level for proper export as FMI/FMU. Control system has not been declared

and is replaceable from a higher level within the HYBRID repository. 21

Figure 23. Correct level from which to begin FMI/FMU preparation. Control system has been

selected via the drop-down menu available in the custom parameters section, shown on

the left. (Red dots are electrical flow ports). ... 22

Figure 24. Preparing a natural gas turbine to be converted into an FMU. The inputs into the

system are the peaking demand and the connection points for electricity backflow into

the turbine model. The output is the electrical power as a real value. .. 23

Figure 25. Export settings from Dymola 2021x. ... 24

Figure 26. Importing FMU steps in Dymola 2021x. ... 25

Figure 27. Import settings from Dymola 2021x. ... 25

Figure 28. Proper import and use of a co-simulation FMU in Dymola. .. 26

Figure 29. FMI settings for the natural gas turbine FMI/FMU in co-simulation mode. The

communication interval was every 0.12 seconds, with an internal solver tolerance of

1e-6. The internal solver was the Dymola specific DASSL solver. .. 27

Figure 30. Comparison of Dymola model results to co-simulation and model exchange FMU

results. Communication intervals for co-simulation = 0.12 seconds and 1 second..................... 28

Figure 31. Translation of the Modelica turbine generator model into an FMU-ready design..................... 29

 ix

Figure 32. Transition from a Modelica model to an FMI-based simulation. .. 30

Figure 33. Comparison of turbine output results between the original model and model exchange

FMU. ... 30

Figure 34. New structure of the repository. ... 32

Figure 35. An example of tests run in the ROOK regression system. ... 35

Figure 36. Status of the required SQA documentation for the HYBRID modeling repository. 37

Figure 37. RAVEN framework scheme. .. 39

Figure 38. External model API. ... 40

Figure 39. FMI/FMU model skeleton in RAVEN. .. 41

Figure 40. FMI/FMU co-simulation protocol coupled with RAVEN. .. 42

Figure 41. FMI/FMU model exchange protocol coupled with RAVEN. .. 43

Figure 42. External model FMIFMU example RAVEN input file. ... 43

Figure 43. Construction process for surrogate models in RAVEN. .. 44

Figure 44. RAVEN ROM cross-validation scheme. ... 45

Figure 45. RAVEN AI FMI/FMU exporting process. ... 46

Figure 46. Example RAVEN input file to export AI as FMIs/FMUs. .. 47

Figure 47. RAVEN’s current FMI/FMU exporting capabilities. .. 47

Figure 48. RAVEN hybrid model scheme. .. 48

Figure 49. Integrated energy park consisting of a nuclear reactor (NPP), Energy Manifold (EM),

Balance of Plant (BOP), Switch Yard (SY), Electric Batteries (Battery), Infinite Grid

(IG), and a Natural Gas turbine (NG). The natural gas turbine is to be exported as an

FMU. ... 50

Figure 50. Preparing the natural gas turbine for conversion into an FMU. The inputs into the

system are the peaking demand and connection points for electricity backflow into the

turbine model. The output is the electrical power as a real value. .. 51

Figure 51. Integrated energy park consisting of a nuclear reactor, electric batteries, and a natural

gas turbine replaced by a co-simulation FMU. ... 52

Figure 52. Top) Five-hour simulation of the natural gas turbine power vs. setpoint demand for the

integrated energy park in regard to Modelica-only model, co-simulation FMI, and

model exchange FMU. Bottom) Closeup shot of the turbine demand vs. turbine output

for the different FMI versions. Note that all agree reasonably well. Co-simulation

communication interval = 1 second... 53

Figure 53. Simplified model of the FMI for RAVEN surrogation. ... 54

Figure 54. Comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the RAVEN

AI-based GTTProm.fmu. .. 55

Figure 55. Closeup of the comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and

the RAVEN AI-based GTTProm.fmu. .. 56

Figure 56. Integrated energy park (excluding the turbine) FMI/FMU generated with Dymola. 57

Figure 57. Integrated energy park FMI/FMU, including the Dymola GTTP model. 58

 x

Figure 58. Integrated energy park FMI/FMU, replacing the Dymola GTTP model with the

RAVEN AI-based FMI/FMU. ... 59

Figure 59. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU for a 5-hour

simulation of the turbine power vs. setpoint demand for the integrated energy park. 59

Figure 60. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU closeup shot of

turbine demand vs turbine output. ... 60

Figure 61. Proposed master simulator within RAVEN. .. 62

TABLES

Table 1. Synopsis of Modelica test cases. ... 32

 xi

Page intentionally left blank

 xii

ACRONYMS

AI Artificial Intelligence

API Application Program Interface

CPU Central Processing Unit

FMI Functional Mock-Up Interface

FMU Functional Mock-Up Unit

FORCE Framework for Optimization of ResourCes and Economics ecosystem

FOM Figure of merit

HTSE High Temperature Steam Electrolysis

IES Integrated Energy Systems

INL Idaho National Laboratory

NHES Nuclear Hybrid Energy Systems

RAVEN Risk Analysis and Virtual Environment

ROM Reduced-order model

SMR Small Modular Reactor

SQA Software Quality Assurance

V&V Validation and Verification

 xiii

Page intentionally left blank

1

1. INTRODUCTION

Grid demand variability is an inherent part of the modern dynamic lifestyle. The addition of

renewable energy (e.g., wind and solar) technologies introduces variability into the grid supply.

As renewable energy integration continues to grow, variability will further increase. The

Department of Energy Office of Nuclear Energy (DOE-NE) Integrated Energy Systems (IES)

Program, led by Idaho National Laboratory (INL), is researching the effects the impact of

increasing variability on grid reliability and generator profitability, and is also investigating the

complementary role of non-electric applications of these generators. IES involve the design,

integration, and coordinated operation of several complex, traditionally standalone systems. The

control algorithms involved are unique to each application and component design. IES

architecture can include process steam applications, thermal energy storage, and the presence of

intermittent energy sources such as wind and solar, as illustrated in Figure 1.

Thermal

Energy

Fuels

Battery Storage

Electrolysis

O2 H2

Storage

Thermal Energy

Generation

Thermal or

Mechanical Energy

Storage

Consumer

Products
Natural

Resources

(Gas, Oil, Coal, Biomass)

Conversion Plant

Power GenerationPower Generation

Grid

Wind Farm

Wind Farm

Wind Farm

Electricity

Low

Grade

Thermal

Energy

Figure 1. Example IES architecture, illustrating thermal and electrical interconnection to support

hydrogen production and chemical conversion.

The goal of these systems is to operate as economically and efficiently as possible. For

integrated energy parks that incorporate thermal storage, this means operating thermal generators

at full power and storing excess energy during times of low total demand, then discharging that

energy during times of high demand.

Since early 2013, to accommodate the vast array of possibilities introduced by integrated

energy parks, the IES program team has been developing a library of high-fidelity process

models in the Modelica modeling language [1]–[4]. Modelica is a non-proprietary, object-

oriented, equation-based language for conveniently modeling complex physical systems. It is

inherently time-dependent and enables the swift interconnection of independently developed

2

models. As an equation-based modeling language that employs differential-algebraic equation

solvers, Modelica allows users to focus on the physics of the problem rather than on the solving

technique, thus enabling faster model generation and, ultimately, analysis. This feature,

alongside system flexibility, has led to widespread use of Modelica for commercial applications

throughout the industry. System interconnectivity and the ability to quickly develop novel

control strategies while still encompassing overall system physics is why INL chose to develop

the IES framework in the Modelica language.

The dynamic physical models created in Modelica are a cornerstone of the IES program.

These models are used to create system architectures and characterize the system inertia, thermal

losses, and the efficiency of integrated systems. These physical models help map physical

performance into economic performance, allowing for system-level optimization. In addition, the

models are used to test innovative system-level control strategies for interconnected thermal

generators. However, it is noted that, for real-world applications, it is not always practical to

rewrite a model in Modelica; instead, interoperability with Legacy FORTRAN, C, Python, or

other codes may be required.

To accomplish this, the IES Program is seeking to modify HYBRID, the existing physical

modeling repository, to be consistent with the “plug-and-play” approach in Modelica/Dymola

models using Functional Mock-Up Units (FMUs), Functional Mock-Up Interfaces (FMIs), and

machine-learning techniques (see Figure 2). The final product will greatly enhance the physical

modeling interoperability within INL’s Framework for Optimization of ResourCes and

Economics ecosystem (FORCE) that is used to solve system/grid level optimization problems

[5],[6].

3

Figure 2. Plug-and-play framework environment.

This report summarizes the fiscal year (FY) 2020 efforts to create a plug-and-play repository

of process models using the existing HYBRID repository, FMIs, FMUs [4], and the newly

developed capabilities in the Risk Analysis and Virtual Environment (RAVEN) software for

exporting artificial intelligence (AI)-based FMI/FMU models. The document characterizes and

demonstrates the capabilities and improvements made to the previously-developed HYBRID

repository of Modelica models for use as a software-quality-assured (SQA) plug-and-play

system within FORCE.

The infrastructure of the GitHub repository that hosts the HYBRID repository was also

enhanced. These improvements, described later in full detail, include the development (using the

RAVEN-based ROOK regression system) of a Dymola output “differ” script for use with the

commercially available Modelica-based modeling and simulation environment (i.e., a Dynamic

Modeling Laboratory [Dymola] version 2021 FD01 [7]), inclusion of the Oak Ridge National

Laboratory (ORNL) TRANSFORM library as an automatic submodule [8], creation of a user

manual [9], and development of component-level regression tests for each Modelica model.

Extensive work was carried out on the deployment of methods for constructing RAVEN AI-

based models compliant with the FMI/FMU standard. Such work represents the necessary initial

development for deploying the “flexible ecosystem” (plug-and-play) concept, since it allows for

replacement of high-fidelity Modelica models (or any other FMI/FMU-compliant model) with

RAVEN-generated AI surrogate models. This capability enables the deployment of acceleration

schemes for analyzing IES.

4

The Conclusions section of this report highlights the high flexibility achieved via the plug-

and-play framework, possible shortcomings of the approach, and areas for further enhancement.

2. FUNCTIONAL MOCK-UP INTERFACES AND UNITS

This section briefly describes the FMIs and FMUs. As per the Modelon website

(https://www.modelon.com): “FMI is an open standard for exchanging dynamical simulation

models between different tools in a standardized format.”

FMIs were first introduced by Dassault Systems under the name MODELISAR in 2008.

FMIs define a standardized interface for use in computer simulations to develop complex cyber-

physical systems. Additionally, FMIs/FMUs can be exported as binary files, enabling industry

partners to exchange and simulate proprietary information safely and securely, without potential

information leakage.

The FMI standard describes an open format for exporting and importing simulation models

using a common data exchange nomenclature. In other words, the FMI standard allows the user

to retain the same model while selecting the tools best suited for each type of analysis.

In order to be executed, an FMI is always “shipped” with an FMU. An FMU is the

executable that implements the FMI. During exportation of an FMU, an FMU archive is

generated from a systems model, whereas during an FMU import, a systems model is generated

from an FMU archive.

FMUs contain the following:

- A model description XML file: This file contains information about the model (e.g.,

variable definitions: type, unit, description, etc.) and other more general model

information, such as model name, generation tool, and FMI version.

- Model equations: A model can be described using ordinary differential equations,

algebraic relations, and discrete equations—including time, state, and step events.

These equations can in turn be represented by a small set of C functions. The C code is

then distributed in the FMU in source and/or binary form, and one FMU can contain

binaries for more than one platform and/or platform version.

- Optional resource files: Other optional files might be included in the FMU, such as

documentation files (HTML), model icons (bitmap files), maps and tables, and other

libraries or dynamic link libraries (DLLs) used in the model.

The FMI/FMU standard currently specifies two types of protocols:

- FMI/FMU for model exchange (import and export)

- FMI/FMU for co-simulation (master and slave).

The main difference between these two protocols is that, in model exchange, the FMU is

simulated using the importing tool's solver, whereas in co-simulation, the FMU is shipped with

its own solver.

The FMI for model exchange allows FMUs to be used in offline or online simulation—with

several FMUs potentially being connected—or in embedded control systems on microprocessors.

https://www.modelon.com/

5

2.1 Co-simulation

Figure 3 shows the information flow and scheme of FMIs/FMUs in a co-simulation

configuration. The co-simulation (CS) configuration is characterized by:

- Standalone black-box simulation components

- Data exchange being restricted to discrete communication “checkpoints”

- Between two consecutive communication checkpoints, the system model is solved by

its internal solver.

In summary, the goal of a co-simulation operation is to individually compute the solution of

time-dependent coupled systems and have them communicate back and forth at predetermined

time steps, ∆t, known as communication steps (or checkpoints). The simulation is independently

performed between all the subsystems, and at each ∆t there is a communication and transfer of

boundary conditions between subsystems. Because of the independent nature of these

subsystems, an FMI for co-simulation is the easiest method to implement. However, due to the

different solver types and the need to specify ∆t, the scheme between systems becomes fully

explicit. Being fully explicit, it is crucial to identify a small enough ∆t to ensure system stability.

This step size limitation ultimately reduces the simulation speed.

Figure 3. Co-simulation FMI/FMU scheme.

6

2.2 Model Exchange

Figure 4 shows the information flow and scheme of an FMI/FMU in a model exchange (ME)

configuration. As shown in the figure, the model exchange configuration can be described as

having the following characteristics:

- Standardized access to model equations

- Models described by algebraic, differential, and discrete equations

- Monitoring of time, state, and step events

- Models that must be solved using solvers provided by the embedding environment.

In summary, in a model exchange FMI/FMU, the numerical solver is supplied by the

importing tool. The FMU provides functions to set the state/inputs and compute the state

derivatives. The solver in the importing tool will determine what time steps to use and how to

compute the state at each subsequent time step.

Figure 4. Model exchange FMI/FMU scheme.

2.3 Advantages of Each Protocol

Each of the two protocols described in the previous section, namely CS and ME, offer certain

advantages.

Co-simulation

1. Not all tools support both protocol types. Support for CS is more common than for ME.

2. The numerics of the model may require a specific solver available in the exporting tool

but not in the importing tool.

7

3. The FMU may represent a sampled data system (e.g., signal processing or control

algorithms) not governed by differential equations and therefore more naturally

expressed as a co-simulation FMU.

4. The exporting tool may have a more efficient implementation of the solver than the

importing tool.

Model exchange

1. An explicit scheme is avoided, since the entire solve is done simultaneously.

2. Dynamic time stepping is allowed.

3. The importing tool could have a more efficient implementation of the solver than the

exporting tool.

3. MODELICA TO FMU ADAPTATION

Modelica is a physical modeling language that relies on an acausal (rather than causal)

assignment of equations. This means that an equation can only appear once, and that the

translator and system solvers will determine the proper way to assign the flow of information. In

addition, since Modelica is a physical modeling language, there are the assignments of special

variable containers “flow” and “stream” that have an inherent physical representation in the

code. Flow variables have a direction and must sum to zero in a “connection.” The “stream”

qualifier is used to qualify when a given element in a connection has an intensive property

flowing through a connector. These “connectors” include a singular flow variable with several

stream variables alongside it. For example, a “fluid port” is a connector that has the mass flow

rate as the “flow” variable and enthalpy as the “stream” variable. Mass flow is what physically

goes through the connector, while enthalpy is a property of the mass flow. This nuance in

variable types is particularly important when considering the translation of Modelica models into

FMIs and FMUs. FMIs can only import and export real input/output signals. These signals

cannot retain the physical properties seen in Modelica, thus requiring special adaptors to translate

them back into physical values for use in other Modelica models.

3.1 Adaptors

For connections between FMIs and other Modelica models within the Dymola platform, a set

of standardized variables and adapters are needed to properly transmit energy values among

subsystems. This is particularly true if the interconnection is between two physical models, such

as a nuclear power plant and a turbine. This is because the physical models contain “ports,” as

shown in Figure 5.

8

Figure 5. Fluid ports (note that “ports” are a container method in Modelica used to transfer several pieces

of physics-based information within a single “connector”).

Each fluid port contains:

• Mass flow (flow variable), m_flow

• Conditional enthalpy (stream variable), h_outflow

• Pressure, P

• Trace substance fraction (stream variable), Ci

• Mass fraction (stream variable), Xi.

Each electric port contains:

• Power (flow variable), W

• Frequency, f

To properly transition from ports to input and output signals, the individual components of

the ports must be separated out and assumed to be either an input or an output. This is illustrated

in Figure 6, with each fluid port being separated into its five constituent pieces (mass flow,

enthalpy, pressure, mass fraction, trace substance fraction), and the electric port being separated

into its two constituent parts (power and frequency).

9

Figure 6. Transition from a Modelica physical model into an FMU.

In the HYBRID repository package structure, a set of adaptors was created and added to the

utility folder to enable users to convert an existing Modelica model into a model ready for export

as a FMU. The package placement is seen in Figure 7. Further details on each FMI template and

interface are outlined in the next section.

Figure 7. FMU template folder location within the larger Nuclear Hybrid Energy Systems (NHES) folder

as part of the HYBRID Repository.

10

Fluid Port Adaptors

Within the Utility.FMI_Templates folder is an adaptor package created specifically for

Modelica standard library fluid adaptors. This package is called MSLFluidAdaptors, and it

models acausal to causal adaptors. This folder was created in unison with Modelon. Within this

folder are two adaptors, shown in Figure 8. One is a “pressure to mass flow” adaptor, aptly

named PressuretoMassFlow. This adaptor’s fluid port is best connected to a flow port of some

sort (e.g., valves, resistance, pipe model). The inputs to this model are the pressure at the

interface, upstream enthalpy from the causal side, upstream mass fraction from the causal side,

and upstream trace composition from the causal side. The outputs are the acausal mass-flow rate,

upstream enthalpy from the acausal side, upstream mass fraction from the acausal side, and

upstream trace composition from the acausal side.

The second adaptor, called the MassFlowtoPressure adaptor, is a “mass flow to pressure”

adaptor. This adaptor’s fluid port is best connected to a volume port (e.g., pressure sink, tank

model). The inputs to this model are the causal mass-flow rate, upstream enthalpy from the

causal side, upstream mass fraction from the causal side, and upstream trace composition from

the causal side. The outputs are the pressure at the interface, upstream enthalpy from the acausal

side, upstream mass fraction from the acausal side, and upstream trace composition from the

acausal side.

Figure 8. (Left) PressuretoMassFlow adaptor. This adaptor is best connected to a resistance port able to

set the output mass flow rate. (Right) MassFlowtoPressure adaptor. This adaptor is best connected to a

volume port able to set the output pressure. Note: Both of these adaptors were created by Modelon for use

in the INL plug-and-play framework as part of an FMI/FMU course subcontract.

Figure 9 illustrates the usage of the two adaptors on a single model involving reversible flow.

The model is of a series of two fully open valves connected to a volume source positioned

between them, and a pressure source on either side of the valves. The system fluid is moist air

from the Modelica standard library. The pressure source is then subjected to a 1 Hz oscillatory

frequency on the pressure system, as would be present in a fast-moving pressure chamber, while

11

the pressure sink remains at a constant pressure. In normal operations, this system will have a

reversible flow, as the pressure of the source oscillates about the pressure sink’s pressure. Such

scenarios have been challenging to meet with FMIs and FMUs, due to the reversible nature of

the mass flow. With the new adaptors, this reversible flow issue can be met.

Figure 9. An example (using adaptors) involving two pressure sources using moist air, one of which

oscillates in pressure, causing a mass flow reversal. The unit in the red box will become an FMU.

(k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed on

pressure_source).

The unit inside the red box in Figure 9 was exported as both a model exchange and co-

simulation FMU, as shown in Figure 10 and Figure 11. All systems were then run for 10 seconds

of simulation time. The results are depicted in Figure 12.

12

Figure 10. Example of a reversible flow using two pressure sources, moist air, and a model exchange

FMU. (k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed

on pressure_source).

Figure 11. Example of a reversible flow using two pressure sources, moist air, and a co-simulation FMU.

(k=Temperature input to pressure flow boundary; freqHz = pressure frequency oscillation placed on

pressure_source).

13

Figure 12. Comparison of mass flow to the pressure sink across the original model, model exchange

FMU, and co-simulation FMU (timestep = 0.02 seconds).

The results showcase that, by utilizing the fluid port adaptors, reversible flow is achievable in

both the model exchange and co-simulation FMIs/FMUs. However, these capabilities carry

additional overhead in regard to central processing unit (CPU) time. Model exchange for this

particular model increases the simulation time from 2.364 to 6.749 seconds. Co-simulation with

a 0.02-second communication interval took 10.795 seconds. Even so, co-simulation still shows

the largest error, due to co-simulation models inherently being an explicit solve. However, given

a sufficiently small communication interval, and depending on the dynamics of the model, an

acceptable solution can be achieved.

Thermal Port Adaptors

Within the Utility.FMI_Templates folder is an adaptor package created specifically for

Modelica standard library thermal adaptors. This package is called MSLHeatAdaptors, and it

models acausal to causal adaptors. These models were initially made available in the Modelica

standard library and have been augmented with additional examples and placed within the NHES

package for ease of access relative to other FMI adaptors. Two adaptors are included, one being

the GeneralHeatFlowToTemperature adaptor. The inputs to this adaptor are the acausal heat flow

port, causal heat flow, and optional causal first and second derivatives of heat flow. The outputs

are the temperature and the optional first and second derivatives of temperature.

14

The second adaptor is the GeneralTemperaturetoHeatFlow adaptor. The inputs to this adaptor

are the acausal heat flow port, causal temperature, and optional causal first and second

derivatives of temperature. The outputs are the heat flow and the optional first and second

derivatives of heat flow.

Figure 13. (Left) GeneralTemperatureToHeatFlow adaptor for use in the INL plug-and-play framework.

(Right) GeneralHeatFlowToTemperature adaptor for use in the INL plug-and-play framework.

(T=temperature, dT = first derivative of temperature, d2T = second derivative of temperature, Q = heat

flow, der(Q) = first derivative of heat flow, der2(Q) = second derivative of heat flow.) Note: only T and Q

are required the derivative values are optional for stability.

Figure 14 illustrates the usage of the two adaptors in a single model involving two methods

of heat port usage. The upper model demonstrates how to export two heat capacitors and connect

them together in a target system. This requires that one of the capacitors (here, DirectCapacity)

be defined to have states, and that the temperature and derivatives of the temperature are

provided in the interface. The other capacitor (here: InverseCapacity) requires a heat flow in

accordance with the provided input temperature and derivative of temperature. The lower part

demonstrates how to export a conduction element that only requires temperatures for its

conduction law, and connects this conduction law to both the heat capacitors in a target system.

Both models will be translated into a model exchange and co-simulation model, as shown in

Figure 15, Figure 16, Figure 17, and Figure 18. The results are compared in Figure 19 and Figure

20.

15

Figure 14. Example meant to demonstrate the FMU variants available with the thermal FMU adaptors.

The upper part demonstrates how to export two heat capacitors and connect them together in a target

system. The lower part demonstrates how to export a conduction element that only requires temperatures

for its conduction law, and connects this conduction law to both heat capacitors in a target system.

16

Figure 15. Demonstration of an FMU variant example that uses model exchange FMUs for the thermal

heat port adaptors.

Figure 16. Collapse of the upper part of Figure 14 into a single FMU for co-simulation. This is required

because the frequency between the direct and inverse conduction problem is so fast that a single cut

between the two could not be made without instabilities occurring.

17

Figure 17. Upper model of Figure 14 connected with the combined direct/inverse co-simulation FMU.

Figure 18. Lower model of Figure 14, co-simulation FMU.

The results showcase that, by utilizing the thermal adaptors, acceptable results in terms of the

heat flow between models can be achieved via both model exchange and co-simulation

FMIs/FMUs. However, these capabilities carry additional overhead in regard to CPU time, as

was the case in the fluid port scenario. The co-simulation mode, though theoretically easier to

export to external codes thanks to its inclusion of a solver, required the most augmentation, due

to the fast system dynamics. This limitation required the FMU to include both the direct and

inverse capacitors within a singular model, as shown in Figure 16, otherwise a divergent solution

was acquired. Even with this additional step, the co-simulation solve still showed the largest

error, as depicted in Figure 19 and Figure 20. This is because co-simulation models are

inherently an explicit solve. However, given a sufficiently small communication interval and

depending on the dynamics of the model, an acceptable solution can be achieved.

18

Figure 19. Direct/inverse simulation results for the original, model exchange, and co-simulation

(communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the capacitor. (Bottom)

Capacitor 3b temperature.

19

Figure 20. Conduction (lower model) simulation results for the original, model exchange, and co-

simulation (communication interval: 0.002 seconds) FMU runs. (Top) Heat flow into the capacitor.

(Bottom) Capacitor 3b temperature.

Electrical Port Adaptors

Within the Utility.FMI_Templates folder is a package created specifically for electrical

adaptors. This package is called ElectricalAdaptors, and it models acausal to causal adaptors.

Two adaptors are included (see Figure 21), one being the GeneraPowerFlowToFrequency

adaptor. The inputs to this adaptor are the acausal electrical port, causal power, and optional

causal first and second derivatives of power. The outputs are the frequency and the optional first

and second derivatives of frequency.

The second adaptor is the GeneralFrequencyToPowerFlow adaptor. The inputs to this

adaptor are the acausal electrical port, causal frequency, and optional causal first and second

20

derivatives of frequency. The outputs are the power flow and the optional first and second

derivatives of power flow.

Figure 21. (Left) GeneralFrequencyToPowerFlow adaptor for use in the INL plug-and-play framework.

(Right) GeneralPowerFlowToFrequency adaptor for use in the INL plug-and-play framework. (Red circle

represents the electrical port, with inputs and outputs equal to the aforementioned variables in the

section).

3.2 FMI Construction Guide

To properly create and utilize a model as an FMI/FMU, the following five steps must be

accomplished.

1. Model Preparation

2. Adaptors

3. Export

4. Import

5. Simulation

This section seeks to provide step-by-step guidance on how each of these steps can be

accomplished.

21

Model Preparation

For a model to become a usable FMU, it must contain all the required input/output variables

within itself, aside from those designated to come from an outside model. This requirement

means that, for units featuring interchangeable control systems, a particular control system must

be declared via a top-level declaration in an example style file. An example of both an incorrect

and a correct file format for a natural gas peaking turbine are shown in Figure 22 and Figure 23,

respectively. In Figure 22 the natural gas turbine model includes the basic constituent parts for its

simulation (compressor, turbine, combustion chamber, inertial generator shaft, generator, fuel

controllers, and geometrical data assumptions). But in Dymola if this model is run it is missing a

selected control system for the sensor and actuator bus as this is a “replaceable” component.

Meaning the model needs to be imported within a new model to allow us to select the control

system.

Figure 22. Incorrect level for proper export as FMI/FMU. Control system has not been declared and is

replaceable from a higher level within the HYBRID repository.

This placement within a new model is shown in Figure 23. In this case the model from Figure 22

is placed within a new model, the electric port is attached to a frequency boundary condition and

if we double click the natural gas turbine icon the table on the left pulls up where the control

system can be selected and values can be imported for system size and maximum power output.

Once this control system is selected the model is now ready to begin model preparation for

FMI/FMU exportation. Note: the control system selected will be the control system exported

with the FMI/FMU.

22

Figure 23. Correct level from which to begin FMI/FMU preparation. Control system has been selected via

the drop-down menu available in the custom parameters section, shown on the left. (Red dots are

electrical flow ports).

Adaptors

Now that the proper model has been created, the variables designated to come from outside

the FMU must be declared as a real “input” or “output” variables, as demonstrated in Figure 6.

To accomplish this, the adaptors can be employed in the manner previously outlined. For the

natural gas turbine example illustrated in Figure 23, the electric port must be converted into real

inputs/outputs using the PowerFlowToFrequency adaptor described in the previous section. In

addition, the control system of the natural gas turbine requires a top-level demand signal to

communicate the grid demand at each time interval. To implement such communication into the

model, an additional real input variable, “SES_Demand,” was created. With the adaptor and new

input signal created, the model took the form depicted in Figure 24, and is ready for export as an

FMU. This procedure of using an adaptor to transform ports into their real input/output

components, and creating additional inputs/outputs for declared variables, works well for simple

models and models intended for use in model exchange mode. For complex models planned for

simulation in co-simulation mode, use of adaptors may prove challenging if the initialization of

the models is not well-defined. This is due to the explicit nature of co-simulation modeling.

Further details on this will be given in later sections of this report.

23

Figure 24. Preparing a natural gas turbine to be converted into an FMU. The inputs into the system are the

peaking demand and the connection points for electricity backflow into the turbine model. The output is

the electrical power as a real value.

Export

Dymola offers several ways to export a model as an FMU, as shown in Figure 25. The FMU

can include three different types of export: model exchange, co-simulation using the CVode

solver, and co-simulation using various Dymola solvers.

In model exchange, the component model will be exported without a solver, as it is assumed

that the importing tool will provide the solver. For co-simulation models, CVode and Dymola

solvers can be exported with the component model for use within other models. In general,

CVode solvers are sophisticated enough for most models, and export can be selected in either C-

code or binary code, depending on the purchased Dymola license. In the event a particular

Dymola solver is required to compile a component model, the co-simulation export can only be

accomplished as a binary, thus protecting the proprietary solver information held by Dassault

systems. However, binaries are operating-system dependent, so care must be taken to ensure that

export of binary FMUs is conducted on the same operating system as the planned importing tool.

24

Figure 25. Export settings from Dymola 2021x.

Import

Once the model has been exported and an FMU created, the model will be present as an .fmu

file. In the case of the natural gas turbine, it will be called “SES_GTTP.fmu.” To import this file

in Dymola, click File Open Import FMU, as shown in Figure 26.

The FMU can be imported in either model exchange or co-simulation mode, as per Figure

27. This selection should be consistent with the export options included in the FMU. If the

desired import mode is different than the model of the original FMU, the imported FMU will

fail.

 Including the “structured declaration of variables” option retains the structured file tree of

variables that were present in the original model, enabling the user to look inside the FMU as

though it were the original Dymola model. If this option is not selected, a single large list

featuring all the variables available for access will be made available to the user.

25

Figure 26. Importing FMU steps in Dymola 2021x.

Figure 27. Import settings from Dymola 2021x.

26

Simulation

After the import step, the model can be used in place of the main component, as shown in

Figure 28. In the system, it is important to ensure that all materials, initial conditions, nominal

conditions, and parameter setpoints are consistent across the boundaries between the FMU and

the rest of the model. This is particularly important because FMUs take real inputs and provide

the surrounding model with outputs that have no physical constraint placed upon them. This

reduces the number of checkpoints that the underlying application program interface (API)s has

in order to ensure a consistent model. This places more onus on the engineers/researchers.

When using model exchange, the model will act similarly to the primary model, as the

equation set remains exposed to the underlying import tool solvers. Conversely, in co-simulation

mode, a specified “communication step” size must be selected, at which point the models will

export results for communication with the surrounding external models. Selecting a small

enough communication step to ensure that all the dynamics are captured is critical, but selecting

a time-step communication interval that is too small greatly reduces the system’s simulation

speed.

Figure 28. Proper import and use of a co-simulation FMU in Dymola.

27

Figure 29. FMI settings for the natural gas turbine FMI/FMU in co-simulation mode. The communication

interval was every 0.12 seconds, with an internal solver tolerance of 1e-6. The internal solver was the

Dymola specific DASSL solver.

To test the FMU, the physical model was run in co-simulation, model exchange, and normal

Modelica-only mode. The resulting turbine output is illustrated in Figure 30. For the three

aforementioned modes, all the models converged to the same solution over the 60-second

simulation time, with real-time simulation speeds of 1.316, 0.147, and 0.064 seconds, respectively.

The co-simulation FMI settings are shown in Figure 29. In all cases, the simulation speeds are

slower for FMU representations. This can be attributed to the increased overall number of variables

that must be simulated due to the need for additional boundary blocks to accommodate real

inputs/outputs. In addition, for co-simulation, the limiter on simulation speed is directly impacted

by the communication step size and the nonlinearity of the coupled system. For example,

increasing the communication step size from every 0.12 seconds to every second reduces

simulation time from 1.316 seconds to 0.514 seconds. However, as demonstrated in Figure 30, this

comes at the price of accuracy. Therefore, it is essential that, for co-simulation models, the

communication step occur at points with slow-moving physics in order to allow the system a larger

communication step size.

28

Figure 30. Comparison of Dymola model results to co-simulation and model exchange FMU results.

Communication intervals for co-simulation = 0.12 seconds and 1 second.

3.3 Turbine Replacement Example

The creation of FMUs makes it possible to take a model from one coding language and

encapsulate it in a standardized format for use within another coding language. To test this

functionality with the more complicated fluid equation set of water, a natural circulation small

modular reactor (SMR) set was chosen. The modeling set, shown in Figure 32, includes the

reactor, energy manifold, turbine generator, and electric grid—all modeled in the Modelica

language. The turbine generator set was then converted from a Modelica model into an FMU to

ensure that all the proper data were input into and transferred between the models. The initial

step was to implement the adaptors (discussed in the previous section) that transform the fluid

ports into constituent real outputs, as shown in Figure 31. The progression of translation is

shown in Figure 32, going from the Modelica-only model to a model exchange FMU that is then

included in the model.

29

Figure 31. Translation of the Modelica turbine generator model into an FMU-ready design.

The control system within the turbine generator model is maintained through the translation

process and can fulfill the desired setpoints within the turbine model. Then, the model is

exported into a model exchange FMU and reimported into the Modelica framework. A

comparison of the turbine power output is depicted in Figure 33, showing that the different

versions of the model are in close agreement with each other. The differences can be attributed to

minute variations in initialization subroutines that occur in the initialization phase of the run. The

FMU-based results and input-based Modelica results are nearly identical, and both simulations

were able to meet the turbine demand setpoints. It is worth noting that a version using co-

simulation was attempted, but instabilities arising from the explicit time-stepping scheme could

not be overcome; thus, the co-simulation was deemed unsolvable. Such scenarios become more

common as the complexity of the models increases. While co-simulation is the easiest version of

FMI to implement, instabilities such as these also increase the possibility of simulation

roadblocks.

30

Figure 32. Transition from a Modelica model to an FMI-based simulation.

Figure 33. Comparison of turbine output results between the original model and model exchange FMU.

31

4. HYBRID REPOSITORY

At the beginning of the IES Project, a version control repository was delivered in order to

provide a common location for the deployment of system and component models and analyses

developed and constructed with Modelica/Dymola and RAVEN. To initiate the construction of a

flexible plug-and-play Modelica/RAVEN framework for IES analysis, a restructuring of the

version control repository (HYBRID, available at https://hpcgitlab.inl.gov/hybrid/hybrid and at

the open-source repository location https://github.com/idaholab/HYBRID) was performed.

The following main tasks were performed for this specific activity:

• Usage of the RAVEN regression test system (named ROOK) for deployment of a single,

integrated testing platform for both Modelica and Dymola models/analysis and RAVEN

workflows. The testing system was linked with the automatic continuous integration tool

for the automatic testing of the models and analyses when new modifications are added in

the repository.

• Folder structure optimization for easier browsing and usage of the version control

repository.

Figure 34 shows the new repository structure, with the following main folders identifiable:

• Models: contains the Modelica and Dymola models

• archive: where old examples and analyses (i.e., documents, models, input files, etc.) are

archived and stored to guarantee reproducibility of published results

• developer_tools: contains utility scripts, methods, and files required for the automation,

deployment, and verification of the tools and software products of the HYBRID

repository. This folder contains all the scripts for the automatic generation of software

quality assurance (SQA) documentation (e.g., requirements, traceability matrix, etc.).

• scripts: contains scripts for installing the HYBRID repository (e.g., scripts to create the

HYBRID configuration file). It also contains specialized classes and scripts for the

automatic regression testing system (e.g., output checkers) and Python-based launchers

for Dymola models (dymola_launcher).

• tests: contains all the tests that are automatically executed by the continuous integration

system and are locally executable by running the command “run_tests.”

• TRANSFORM-library: submodule of the Oak Ridge National Laboratory based

TRANSFORM library that provides base models for many of the integrated energy

systems models

• raven: links to the RAVEN repository.

https://hpcgitlab.inl.gov/hybrid/hybrid
https://github.com/idaholab/HYBRID

32

Figure 34. New structure of the repository.

Furthermore, a series of Modelica tests has been added to test the system-level interactions in

the NHES Modelica repository. An example output of the regression system is shown in Figure

35.

Table 1. Synopsis of Modelica test cases.

Test Description

Bouncing Ball Simple test that models a bouncing

ball hitting the ground.

BOP Boundaries Test A Balance of plant system based on

pressure difference

BOP Boundaries Test B Balance of plant system based on

forced mass-flow rate

Desalination 1 Pass Single-stage reverse osmosis

component check

Desalination 2 Pass Second stage reverse osmosis

component check

Desalination 2 Pass Mixing Two-stage reverse osmosis with

mixing

33

Desalination Reverse Osmosis

Module

 Fully encapsulated two-stage reverse

osmosis with mixing

Desalination NHES Basic Controlled desalination NHES

system

Desalination NHES Complex Controlled via signal bus NHES RO

system with parallel osmosis units

FMI Fluid CS Test of the fluid adaptors in a small

problem in co-simulation mode

FMI Fluid CS Test of the fluid adaptors in a small

problem, using model exchange

FMI Heat CS Capacity Test of the thermal adaptors in a

small problem in co-simulation

mode, using a thermal capacitance
model

FMI Heat CS Conduction Test of the thermal adaptors in a

small problem in co-simulation

mode, using a heat conduction model

FMI Heat ME Test of the thermal adaptors in a

small problem in model exchange

(solving both the conduction and

capacitance models simultaneously)

Generic Modular PWR SMR of a NuScale size system with

a pump

GTTP_Test Gas turbine load follow test – 60-

second electric demand oscillation

HTSE Power Test High Temperature Steam

Electrolysis (HTSE) NHES system

based on power input control

HTSE Steam Test HTSE NHES system based on steam

and power input control

Hydrogen Turbine Test Hydrogen turbine load follow test –

60-second electric demand

oscillation

NSSS_test Westinghouse-style four loop PWR

test – 10,000 seconds at nominal

power

Simple_Breakers_Test Test of electrical breakers on an

infinite grid

SMR_4Loop Test of load following a natural-

circulation SMR – 5-hour load

follow simulation

SMR Primary Test Test of the primary loop of a natural-

circulation SMR loop

SMR Nominal Test Addition of nominal power test for a

natural-circulation SMR reactor

34

Step-Down Turbines Basic set of step-down turbines

Step-Down Turbines Complex Test of a more complex step-down

turbine system

Supervisory Control Test Test of the supervisory control

system for receiving input from

external files

Test_Battery_Storage Test of a simple electrical battery

system – logical power flow

simulation

Test_Thermal_Storage Test of a Therminol-66 thermal

energy storage facility through both

charge and discharge cycles

TightlyCoupled_FY18_Battery Complex system of systems from the

2018 case (including electric battery

storage)

Tightly Coupled_FY18_TES Complex system of systems from the

2018 case (including thermal energy

storage [two-tank sensible heat])

Thermocline Cycling Test Test of the hourly cycling of a

single-tank packed-bed thermocline

system

Thermocline Insulation Test Test of the insulation heat loss

through the tank walls of a single-

tank packed-bed thermocline system

While these tests are not exhaustive of the Modelica repository system, they provide a

systems-level understanding of the repository model state. Other tests will be added on an as-

needed basis.

35

Figure 35. An example of tests run in the ROOK regression system.

Other capabilities besides tests were added to the regression system in order to allow for

smoother cross-platform and cross-machine compatibility. These capabilities were necessary

because the commercial platform Dymola by Dassault systems has a series of settings that

control the type of outputs sent to the final solution file. Ensuring that every user has the same

flags turned on/off is unrealistic, since some of the flags are global settings turned on for every

simulation loaded into their particular instantiation of Dymola. To get around this, the ROOK

testing system added the capability to only look at those time steps or time intervals guaranteed

to be included in each simulation of the model, regardless of the flags automatically loaded by

Dymola. To accomplish this, an extra option (either “numberOfIntervals” or “OutputInterval”) is

required in the simulateModel command in the regression system. The option numberOfIntervals

tells Dymola how many output intervals to make, whereas OutputInterval tells Dymola at what

time-step interval an output should be present for comparison. These can be selected in the

Simulation Setup tab of the Dymola graphical user interface (GUI).

Further, a restart file loading capability was added to the Modelica regression system. This

was included because, for complex models, the initialization phase of a simulation can require

the Modelica solvers to spend a significant amount of time finding an initialization point. This is

due to the highly nonlinear nature of the underlying physical equations. One way to avoid such

situations is to provide a restart file to bypass the initialization phase of the simulation. A restart

file is automatically created at the end of each simulation; this is the dsfin.txt file created in the

36

folder from which the simulation was run. This file includes the final values of the previous

simulation, from which the new model can restart. Moving this file to the tests/reference folder

and loading it into the regression system can save a substantial amount of time in regression

testing and provide a consistent starting point for each test, rather than relying on the same

initialization point being found during each regression testing cycle. Full details on how to utilize

and create new regression tests can be found on the HYBRID wiki at

https://hpcgitlab.inl.gov/hybrid/hybrid/wiki or at its open-source location,

https://github.com/idaholab/HYBRID/wiki).

The work covered in this report was propaedeutic for releasing the modeling framework in

the open-source community. Several activities were deployed for open-sourcing of the software:

• User documentation:

- Development of an extensive user manual [9], providing a detailed description of the

models (Modelica and Dymola) and instructions on how to execute them

• SQA documentation (see Figure 36), available both in the INL internal Electronic

Document Management System (EDMS) and the GITHUB website under “./doc/sqa/”.

Such documentation is aimed at collecting the following information:

- Project planning information

- High-level overview touching on our entire project and software development

activities.

- Roles and responsibilities

- Merge request workflow (e.g. code change requests)

- Workflow diagram

- Software development plan

- Documentation of references to other relevant plans and procedures

- Information about the software safety and quality level determinations

- Definitions of software validation and verification

- Methods and procedures for software validation and verification.

And it is composed of the following set of documents:

• HYBRID Software Quality Assurance Plan (PLN-6274) (detailing the SQA procedures

adopted for the development and lifecycle of the HYBRID software framework)

• HYBRID Software Configuration Management Plan (PLN-6274)

• HYBRID Software Test Plan (PLN-6274)

• HYBRID IT Asset Maintenance Plan (PLN-6274)

• HYBRID Verification and Validation Plan (PLN-6274)

• HYBRID Software Design Description (SDD-561)

• HYBRID Software Requirement Specification (SPC-2990)

https://hpcgitlab.inl.gov/hybrid/hybrid

37

• HYBRID Traceability Matrix (SPC-2990)

• HYBRID Configuration Item List (LST-1296).

Figure 36. Status of the required SQA documentation for the HYBRID modeling repository.

5. DEPLOYMENT OF A RAVEN FMI/FMU DRIVER

Previous milestone reports [10],[11] demonstrated the successful execution of the FMIs and

FMUs using external Python-based frameworks (FMPy [12] and PyFMI [13]). Such showcasing

provided the basis for implementing the FMI and FMU interfaces within the RAVEN

framework. The following sections offer a brief overview of the RAVEN code and the

implementation of the driver for FMI/FMU-based models.

5.1 RAVEN Introduction

RAVEN is designed to perform parametric and probabilistic analyses based on the response

of complex system codes. RAVEN can be used to investigate the system response—as well as

the input space—using Monte Carlo, grid, or Latin hypercube sampling schemes, but its strength

lies in the discovery of system features, such as limit surfaces, identifying and separating regions

38

of the input space leading to system failure, and using dynamic supervised learning techniques.

RAVEN includes the following major capabilities:

• Sampling of codes for uncertainty quantification and reliability analyses

• Generation and use of reduced-order models (ROMs) (also known as surrogate models)

• Data post-processing (time-dependent and steady-state)

• Time-dependent and steady-state statistical estimation and sensitivity analysis (mean,

variance, sensitivity coefficients, etc.).

The RAVEN statistical analysis framework can be employed for several types of

applications:

• Uncertainty Quantification

• Sensitivity/Regression Analysis

• Probabilistic Risk and Reliability Analysis

• Data Mining Analysis

• Model Optimization.

RAVEN provides a set of basic and advanced capabilities that range from data generation to

data processing and data visualization. Its mission is to provide a framework/container of

capabilities that engineers and scientists can use to analyze system responses, physics, and multi-

physics by employing advanced numerical techniques and algorithms.

RAVEN was conceived with two major objectives in mind:

• To be as easy and straightforward as possible for scientists and engineers to use

• To allow for straightforward expansion of itself by providing clear and modular APIs

(Application Programming Interfaces) to developers.

The RAVEN software is meant to be approachable by any type of user (computational scientists,

engineers, or analysts). Every aspect of RAVEN was driven by this singular principle, from the

build system to the APIs to the software development cycle and input syntax.

The main idea behind the RAVEN software design remains the creation of a multi-purpose

framework characterized by high flexibility with respect to the possible performable types of

analyses. The framework must be able to construct the analysis/calculation flow at run-time,

interpret the user-defined instructions, and assemble the different analysis tasks following a user-

specified scheme.

5.2 RAVEN Models

In RAVEN, coupling of the system to physical models is performed by the model entity API.

The model entity represents a “connection pipeline” between the input and output spaces. The

RAVEN framework (see Figure 37) provides APIs for the main model categories described

below.

• Codes: The Code model represents the communication pipe between the RAVEN framework

and any system and/or physical code/model. The communication between RAVEN and any

39

driven code is performed through the implementation of interfaces directly operated by the

framework. The procedure for coupling a new code/application with RAVEN is a

straightforward process. The coupling is performed through a Python interface that interprets

the information coming from RAVEN and translates them to the input of the driven code.

The coupling procedure does not require modifying RAVEN itself. Instead, the developer

creates a new Python interface that will be embedded in RAVEN at run-time (no need to

introduce hard-coded coupling statements). If the coupled code is parallelized and/or multi-

threaded, RAVEN will manage the system in order to optimize the computational resources

of both the workstations and High-Performance Computing systems.

Figure 37. RAVEN framework scheme.

• Externals: The External model allows the user to create, in a Python file (imported at

run-time into the RAVEN framework), its own model (e.g., set of equations representing a

physical model, connection to another code, and control logic). This model will be

interpreted/used by the framework and, at run-time, will become part of RAVEN itself.

• Reduced Order Models (ROMs): Reduced order, AI-based surrogate models, are a

mathematical representation of a system, used to predict a physical system’s selected output

space. The “training” is a process that uses sampling of the physical model to improve the

ROM’s prediction capability (i.e., the capability to predict the status of the system given a

realization of the input space). More specifically, in RAVEN, the ROM is trained to emulate

a high-fidelity numerical representation (system codes) of the physical system.

ROM External Codes

External Models Post Processors

Ensemble Model

Hybrid Model

Optimizers

J
o

b
 H

a
n
d

le
r

Samplers

40

• Hybrid models: The HybridModel can combine ROMs with any other high-fidelity model

(e.g., Code or ExternalModel). The ROM will be “trained” based on the results from the

high-fidelity model. The accuracy of the ROM will be evaluated based on the

cross-validation scores, and the validity of the ROM will be determined via local validation

metrics. After the ROM is trained, the HybridModel can decide which model (i.e., the ROMs

or high-fidelity model) to execute, based on the accuracy and validity of the ROMs in a

particular operating region.

• Ensemble models: The EnsembleModel is used to create a chain of Models whose execution

order is determined by the Input/Output relationships among them. If the relationships among

the models evolve in a non-linear system, a Picard’s Iteration scheme is employed.

• Postprocessors: The Post-Processor model represents the container of all the data analysis

capabilities in the RAVEN code. This model is used to process the data (e.g., derived from

sampling of a physical code) in order to identify representative Figures of Merit. For

example, RAVEN uses Post-Processors to perform statistical and regression/correlation

analysis, data mining and clustering, reliability evaluation, topological decomposition, etc.

• RAVEN FMI/FMU Driving System Development.

Development of the FMI/FMU driving system is based on the ExternalModel entity in

RAVEN. As briefly reported in the previous section, the external model (see Figure 38) enables

developers to create, in a Python module or platform, a direct coupling with a model coded in

Python (e.g., a set of equations representing a physical model, connection to another code, and

control logic). Once the external model is constructed, it is interpreted and used by RAVEN,

ultimately becoming, at run-time, part of RAVEN itself.

Figure 38. External model API.

RAVEN External Model API

RAVEN

Python
Environment

External Python
Model

(e.g. PyFMI)

u

v

41

Figure 39. FMI/FMU model skeleton in RAVEN.

The ExternalModel API (ExternalModel plugin) was used to develop, in RAVEN, a native

driver for models using the FMI/FMU protocol. Figure 39 shows a snapshot of the “wrapper”

that was developed. The “FMIFMU” RAVEN model implements a generalized method—based

on the RAVEN API and syntax—to import, execute, and process the results of any model

compatible with the FMI/FMU standard. The model consists of the following methods:

- run: The run method (the only required method in the API) aims to execute the FMU

(FMI) for a given input coordinate (or input perturbation). The run method represents

the pipeline between RAVEN and the FMI/FMU model. The method both executes and

collects the results that will be then stored in the object “container,” ready for processing

by RAVEN.

- readExtInput: This method is in charge of reading the user-define input for the

FMI/FMU that needs to be driven. It collects the following information (expandable in

the future, if needed):

• startTime: The start time of the driven FMU (e.g., 0.0 seconds)

• stopTime: The stop time of the driven FMU (e.g., 60 seconds)

• stepSize: The time step size to use for the calculation (e.g., 1.e-2 seconds)

• inputVariables: A list of the input variables (e.g., demand)

• outputVariables: A list of the output variables (e.g., power level)

• fmuFile: The FMU location (e.g., /path/to/myFmu.fmu)

- initialize: This method is invoked right before the model is executed. This method aims

to load the FMI/FMU, instantiate the class, and initialize its settings.

This method is also in charge of performing error checking of the user-defined

settings/options.

- createNewInput: This method, in case of a sampling strategy, is responsible for

translating” the RAVEN info (e.g., the values of sampled variables) into the FMI/FMU

syntax.

42

Figure 40. FMI/FMU co-simulation protocol coupled with RAVEN.

Depending on the type of protocol for the FMI or FMU of interest, two coupling schemes in

the FMIFMU wrapper were developed. Both schemes are encapsulated in the same wrapper and

are executable via the model API in RAVEN.

Figure 40 shows the coupling scheme for FMIs/FMUs when the co-simulation protocol must

be used; RAVEN interacts with the different models via the FMIFMU wrapper that uses FMPy

to import and interact with the FMUs. In this coupling scheme, RAVEN “perceives” the models

imported via FMIs/FMUs just as it would any other external model or code. This protocol is

indicated when the models to connect are loosely coupled (multi-physics feedbacks are not

strong and/or the physics dynamic of the different models act on different time scales, e.g.,

seconds vs. hours or days).

On the other end, Figure 41 shows the coupling scheme for FMIs/FMUs when the model

exchange protocol is used; in this configuration, RAVEN can directly interact with the universal

solver that aims to solve all the models (compatible with the FMI/FMU protocol, in this case

Dymola). This coupling scheme is preferrable when the models are highly nonlinear and the

models are tightly coupled with fast moving dynamics.

43

Figure 41. FMI/FMU model exchange protocol coupled with RAVEN.

Figure 42. External model FMIFMU example RAVEN input file.

Figure 42 shows an example of the portion (in XML) of the RAVEN input file required to

use the FMIFMU wrapper. This XML block is the one processed by the previously-described

method “readExtInput.”. Independently on the type of FMI/FMU that the model will import and

use, the input file specifications do not change; the FMIFMU wrapper will collect the

44

information (co-simulation or model exchange) directly from the FMU (i.e., the <fmuFile>)

after loading.

6. DEPLOYMENT OF RAVEN FMI/FMU EXPORTER FOR AI-BASED

ANALYSIS ACCELLERATIONS

As described in the previous section, the RAVEN framework provides APIs for different

model categories, among which are the ROM, AI-based algorithms. In order to deploy the

acceleration of IES analysis, the ROM (AI) entity is key. Indeed, the ROM is aimed at higher

fidelity surrogate and system simulator-based models (for specific and limited operational

domain) with a set of faster-execution equations that allow for the prediction of Figures of Merit

(of interest) in a span of milliseconds.

Figure 43. Construction process for surrogate models in RAVEN.

45

6.1 RAVEN AI construction

Figure 43 illustrates the standard process of constructing (via optimization) RAVEN

surrogate (AI) models. The surrogate model of interest is trained on a dataset, and its hyper-

parameters (i.e. parameters and characteristics of the surrogate model of interest) are tuned to

maximize the accuracy in predicting the figure(s) of merit (FOMs) of interest. As shown in

Figure 44, the accuracy is assessed by applying statistical methodologies (i.e., cross-validation),

which consists of randomly portioning the dataset into “training” and “testing” datasets. The

“training” dataset is used for constructing the surrogate model, and its prediction is compared

with the “testing” dataset. The prediction accuracy is then assessed using distance metrics (e.g.,

R2 score) between the surrogate model and the testing dataset.

Figure 44. RAVEN ROM cross-validation scheme.

46

The so-constructed surrogate models allow for fast evaluation of the dynamics (or steady

state) of the FOMs of interest. Therefore, such models can accelerate analyses (greatly reduce the

computational time), by replacing high-fidelity physical models with a ROM representation.

6.2 Development of FMI/FMU exporting capabilities for RAVEN AI

To exploit RAVEN AI capabilities, a workflow to export trained (constructed) ROMs using

the FMI/FMU protocol was developed in RAVEN.

The exporting of RAVEN AI is performed according to the following two steps:

1) Exploit the native RAVEN serialization system, which is responsible for serializing (i.e.,

saving in a binary file) already-trained surrogate models that can be loaded in external

(Python-based) packages (outside RAVEN).

2) Use and extend the PythonFMU library (https://github.com/NTNU-IHB/PythonFMU),

which is a lightweight framework that enables the packaging of Python 3 code as co-

simulation FMUs (following FMI version 2.0).

To deploy any model in an FMI/FMU-compatible framework, that model (i.e., ROM) must

be able to be inquired at each “time step,” meaning that the model must allow for execution as an

integrated model and not as a “black-box simulation”. To achieve this goal, the RAVEN ROM

APIs were upgraded by implementing a “method” to solve the surrogate model at each time step.

This modification, in conjunction with the two steps reported above, allows for RAVEN ROM

models to be exportable as FMI/FMUs.

Once the RAVEN AI is trained following the standard process reported in section 6.1, it can

be finally exported following the steps reported in Figure 45. An example of the RAVEN input

blocks is reported in Figure 46, where:

- In the <Models> node, the RAVEN ROM (AI) is shown.

- In the <Files> node, the output FMI/FMU filename is specified.

- In the < Steps> node, the trained ROM (input) is exported as FMI/FMU (output).

Figure 45. RAVEN AI FMI/FMU exporting process.

https://github.com/NTNU-IHB/PythonFMU

47

Figure 46. Example RAVEN input file to export AI as FMIs/FMUs.

The FMI/FMU exporting capability allows for the deployment of the scheme reported in

Figure 47, where the RAVEN models can be used, as FMI/FMUs, in tandem with any

Dymola/Modelica (in general) and HYBRID (in particular) physical models.

Figure 47. RAVEN’s current FMI/FMU exporting capabilities.

DYMOLA

using DymolaExport FMI/FMU

48

Figure 48. RAVEN hybrid model scheme.

6.3 Future Extension of the FMI/FMU Exporter to the RAVEN Hybrid

Model

In previous sections, the creation and export of RAVEN AI was discussed. ROM usage is an

approach that can drastically reduce the computational time of analyses and accelerate

deployment of models. To obtain the optimal prediction capability, the ROM must be

constructed and applied only within the domain of its training set; in other words, the ROM can

guarantee valid predictions only within (or slightly outside) the boundaries of its training set. For

49

example, if a ROM is trained by perturbing a temperature between 500 and 600 K, the ROM

should not be used for predicting a system response at 1000 K.

RAVEN includes an advanced capability called the “hybrid model” to tackle this problem.

Indeed, this model is a special class of algorithms aimed to couple in-tandem, high-fidelity

physical and mathematical models (e.g., FMI/FMU Dymola models) and AI algorithms (e.g.,

ROM, AI). The AI is trained based on the results from the high-fidelity model. The global

accuracy of the AI is evaluated based on cross-validation scores, and the local (e.g., prediction)

validity is determined via certain local validation metrics (i.e., metrics aimed to assess the

confidence of the AI predictions). Once the AI is trained, the hybrid model can decide which

model (i.e., the AI or high-fidelity model) to execute, based on the aforementioned accuracy and

validation metrics. Figure 48 shows the scheme behind the hybrid model formulation. Since the

predictions of the surrogate model are assessed in terms of accuracy, this algorithm discards

ROM predictions if they fall outside its training set boundaries or the response confidence is too

low. In such cases, the high-fidelity model is used and the ROM training set updated.

In the next steps for this program, the “hybrid model” capability will be leveraged in tandem

with the FMI/FMU exporting protocol in order to accelerate the execution of systems that

include multiple FMI/FMUs, allowing for the deployment of models that are able to

autonomously switch between RAVEN AI and Dymola models during analyses. Each FMI/FMU

will be coupled in a hybrid model configuration, resulting in accurate modeling and CPU time

saving.

7. Integrated Energy Park Demonstration Case

To demonstrate the full range of capabilities described in this report, a final test case on an

integrated energy park was conducted. The integrated energy park, shown in Figure 49, consists

of a nuclear reactor, electric batteries, and a natural gas turbine. The natural gas turbine is the

component to be exported as an FMU. The natural gas peaking turbine will then be replaced with

its own FMU from three different sources: the Dymola FMU in both model exchange and co-

simulation, then a RAVEN-based surrogate using co-simulation mode.

50

Figure 49. Integrated energy park consisting of a nuclear reactor (NPP), Energy Manifold (EM), Balance

of Plant (BOP), Switch Yard (SY), Electric Batteries (Battery), Infinite Grid (IG), and a Natural Gas

turbine (NG). The natural gas turbine is to be exported as an FMU.

7.1 FMI/FMU Creation and Use within Dymola

As outlined in earlier sections of this report, the natural gas turbine model needs to be

modified with an electric power adaptor and an input demand signal in order to ensure that all

the variables contained in the flow ports are realigned into real input/output variables.

The adaptors outlined in the previous sections can be used to accomplish these modifications.

For the natural gas turbine example, illustrated in Figure 50, the electric port must be converted

into real inputs/outputs using the PowerFlowToFrequency adaptor previously described. In

addition, the control system of the natural gas turbine requires a top-level demand signal to

communicate the grid demand at each time interval. To implement this communication into the

model, an additional real input variable, “SES_Demand,” was created. With the adaptor and the

new input signal created, the model is ready to be exported as an FMU.

This procedure of using an adaptor to transform ports into their real components and creating

additional inputs/outputs for declared variables works well for simple models and models

intended to be used in model exchange mode. For complex models planned for simulation in co-

simulation mode, use of adaptors may prove challenging if the initialization of the models is not

well-defined. This is due to the explicit nature of co-simulation modeling.

NPP

Battery

IG EM SY BOP

NG

51

Figure 50. Preparing the natural gas turbine for conversion into an FMU. The inputs into the system are

the peaking demand and connection points for electricity backflow into the turbine model. The output is

the electrical power as a real value.

Once the model has been exported using the Dymola interface, it can then be re-imported

into the program and can replace the natural gas turbine model. Since the FMI consists of three

inputs and one output, the three inputs must be specified by the user. To accomplish this, the

FrequencytoPowerFlow adaptor was placed in the Modelica model along with a “real”

expression to connect the turbine demand to the FMI/FMU, as shown in Figure 51.

Using this version of the FMI/FMU, three separate 5-hour simulations were run: one with

Modelica-only input, one with a co-simulation version of the gas turbine, and one in model

exchange mode. The results of this simulation set are depicted in Figure 52. Over the course of

the full 5-hour simulation, the results are all in near-perfect agreement with the setpoints, with

the model exchange and Dymola results being basically identical, and co-simulation being only

52

as accurate as the communication step of 1 second would allow. However, of note is that, while

the Dymola and model exchange versions of the model completed in 121.3 and 156 seconds,

respectively, the co-simulation model took far longer to solve (a total of 642 seconds). This

increased simulation time can be attributed to the additional communication time between the

models as well as the additional initialization routine required by the solvers.

Figure 51. Integrated energy park consisting of a nuclear reactor, electric batteries, and a natural gas

turbine replaced by a co-simulation FMU.

53

Figure 52. Top) Five-hour simulation of the natural gas turbine power vs. setpoint demand for the

integrated energy park in regard to Modelica-only model, co-simulation FMI, and model exchange FMU.

Bottom) Closeup shot of the turbine demand vs. turbine output for the different FMI versions. Note that

all agree reasonably well. Co-simulation communication interval = 1 second.

54

7.2 Creation of Surrogate Using RAVEN

Due to the large increase in simulation time, the relative issues with co-simulation

initialization routines, and the fact that there is no feedback to the rest of the grid, the FMI

created for use in the RAVEN surrogate training was reduced to having only a single input

(turbine demand) with no connected outputs. This setup allows the natural gas turbine to keep all

the initialization pieces of the “infinite” grid self-contained, thus drastically improving the

initialization routine and system robustness. Since the turbine power is a variable given by the

FMU, and no feedback is used in other units’ control systems, the turbine power was not

required to be an external variable for the initial export. The FMI/FMU (GTTP.fmu) exported to

RAVEN is shown in Figure 53.

Figure 53. Simplified model of the FMI for RAVEN surrogation.

To construct a RAVEN-based AI to surrogate the response of the turbine component, the

FMIFMU RAVEN importer described in Section was used to drive the Dymola-exported

FMI/FMU model.

Since the turbine’s response to changes in the demand is very quick (very limited inertia) and

almost perfectly linear, a Support Vector Regressor with linear kernel Error! Reference source n

ot found. was selected for surrogating the response. The turbine FMI/FMU GTTP.fmu was

loaded via the FMIFMU RAVEN importer and its demand sampled (1,000 Monte Carlo

samples) between 0 and 35 MW to capture the model’s full domain of variability. Finally, the

Support Vector Regressor was trained (constructed) and exported to a “brand-new” FMI/FMU

(GTTProm.fmu) by the RAVEN FMI/FMU exporter (co-simulation), as described in Section 6.2.

To validate the RAVEN AI FMI/FMU, a cross-validation assessment was performed in

RAVEN, and, due to the pure linearity of both the turbine and AI models, its average R2 score

55

was >0.99. This is further demonstrated in Figure 54 and Figure 55 which show a comparison of

the Dymola-generated turbine FMI/FMU and the RAVEN AI FMI/FMU, with the models

demonstrating good agreement.

Figure 54. Comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the RAVEN AI-based

GTTProm.fmu.

56

Figure 55. Closeup of the comparison of the Modelica/Dymola GTTP.fmu response (P_flow) and the

RAVEN AI-based GTTProm.fmu.

7.3 Comparison of Results

Section 7.2 described the process of constructing an AI model exported in an FMI/FMU from

RAVEN. To demonstrate the concept of the “plug-and-play” framework, along with the usage of

AI for accelerated analysis, the integrated energy park model was simulated, both using the

original Dymola model (FMI/FMU) for the gas turbine and using the RAVEN AI-based model.

Figure 56 shows the integrated energy park FMI/FMU exported via Dymola. Among the

different variables and outputs is the model fulfillment of the gas turbine model’s demand. Such

output represents the link between the IES park, and the turbine chosen for the demonstration.

Figure 57 and Figure 58 show the setup of the integrated energy park along with the detailed

Dymola FMI/FMU and the RAVEN AI-based FMI/FMU, respectively. Both models were

simulated in an ad-hoc Python code (master simulator) using the FMPy package.

Using the above-mentioned FMI/FMU setup, the two 5-hour simulations were run in the

master simulator (Python code using FMPy). Since the RAVEN AI-based FMI/FMU can be

evaluated in mere milliseconds, the simulation of the setup with the AI was much faster (~20%)

to complete, making the computation time for the turbine evaluation completely negligible;

indeed, the AI FMI/FMU almost zeroed out the CPU time for the turbine simulation, and the

totality of the CPU time was used to simulate the remaining systems in the integrated energy

park, which were more complex and computationally intensive.

Figure 59 and Figure 60 show a comparison of the turbine responses in the integrated energy

park using the Dymola FMI/FMU and the RAVEN AI-based FMI/FMU. Over the course of the

full five-hour simulation, all the results were in near-perfect agreement with the setpoints. The

57

results show that the setup using the RAVEN AI FMI/FMU outperformed (in terms of speed) the

Dymola model, with no loss of accuracy.

Figure 56. Integrated energy park (excluding the turbine) FMI/FMU generated with Dymola.

58

Figure 57. Integrated energy park FMI/FMU, including the Dymola GTTP model.

59

Figure 58. Integrated energy park FMI/FMU, replacing the Dymola GTTP model with the RAVEN AI-

based FMI/FMU.

Figure 59. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU for a 5-hour simulation

of the turbine power vs. setpoint demand for the integrated energy park.

60

Figure 60. Co-Simulation FMI/FMU (Dymola) vs. RAVEN AI-based FMI/FMU closeup shot of turbine

demand vs turbine output.

8. CONCLUSION

This report describes the status of the flexible plug-and-play framework development for

design, analysis, and optimization of integrated energy systems. This framework seeks to

integrate Modelica and Dymola with RAVEN in terms of both FMI/FMU construction and

repository structures intended to simplify model sharing and simulation of complex dynamic

systems.

The report provides an in-depth look at the alterations needed to modify existing system-

level models for exportation as FMUs. These alterations include modifying specialty “port”

variables into their constituent parts as real variables via a new FMI adaptor package added to

the existing HYBRID repository. This package includes new adaptors for electrical, fluid, and

heat ports for export into the FMIs/FMUs. Examples were included within the FMU adaptor

package, illustrating how to properly utilize the system. Several of these examples are discussed

in Section 2 of this report.

Simulation results demonstrate that, while minor differences may occur, the overall control,

trends, and solution integrity is maintained between the standard Modelica simulation and FMU

simulation results. However, it is worth noting that, for small systems, the FMU results have a

slower simulation time than the Modelica-only simulation. While this step-by-step process does

require several levels of checks, it provides a degree of system flexibility never before

experienced. Using this process, a company can provide models that contain proprietary

information to separate entities, without disclosing any information about the model that could

61

be considered business sensitive. Such a capability would allow institutions to bypass the

necessity of having to “whitewash” data.

In addition to the investigative work being conducted on FMUs and FMIs, a series of updates

to the HYBRID repository regression system was completed to ready the repository for open-

sourcing. These updates include additional system-level tests for components in the HYBRID

repository, as well as increasing the testing level from a mere six tests to 32 and counting.

Further, new features have been included in the testing system, such as an initialization

subroutine for Dymola models that helps highly nonlinear complex systems initiate their

regression test. Additionally, the output keys “numberOfIntervals” and “OutputInterval” were

added to the regression system, allowing for consistent comparison points between the reference

file and the simulation results between machines. This step is necessary because the commercial

Modelica platform Dymola has a series of global output flags that are rarely consistently utilized

from one organization to another, yet do not change the trajectories of the solution.

Finally, the work that was deployed to simulate, export, and use FMI/FMU in conjunction

with AI algorithms in RAVEN represents a significant step forward in regard to delivering a

streamlined process to accelerate simulations and analysis by leveraging RAVEN advanced

algorithms. The possibility of using AI exported in FMI/FMU in any FMI/FMU-compatible

framework (e.g., FMPy and Dymola) is unique to this framework, posing the basis for

deployment of fast simulation, modeling, and analysis accelerations.

Overall, extensive work was completed to develop FMUs and FMIs from existing models

and gaining greater understanding of the requirements and limitations of FMI/FMUs.

9. FUTURE WORK

The activities described in this report show the potential of the concept of a “flexible plug-

and-play ecosystem” being developed within the IES program and deployed via the creation of

FORCE. In order to fulfill the promises of FORCE, several tasks are planned to be carried out in

the future of the program:

1) Master Simulator development in RAVEN: in order to automate the deployment of

models in a system that is compatible with any FMI/FMU interface, an entity (Master

Simulator) needs to be developed within RAVEN. Such development will allow for the

simulation of FMI/FMU models (AI, Dymola, etc.) directly within the RAVEN

framework allowing for the integration of such models in any RAVEN workflow, in

general, and in IES technoeconomic analysis, in particular. The Master Simulator in

RAVEN will be based on the EnsembleModel entity (see sec. 5.2), in conjunction with

the FMPy library. The Master Simulator is shown in Figure 61.

62

Figure 61. Proposed master simulator within RAVEN.

2) Model Exchange for RAVEN-based models: in section 6.2 the deployment of a system

for exporting RAVEN-based AI as FMI/FMU leveraging, the PythonFMU library has

been shown. However, the current library only supports FMI/FMU in co-simulation,

useful for loosely coupled models but inadequate for tightly coupled systems. To allow

for exporting of nonlinear models (e.g. Nuclear Reactor Balance of Plant, Storage, etc.),

the PythonFMU library needs to be upgraded to allow for exporting models in model

exchange and, consequentially, leverage the capability of RAVEN AI to provide first and

second order derivative information.

3) Integration of the FARM supervisory control model: Argonne National Laboratory, in

collaboration with Idaho National Laboratory, recently released a RAVEN plugin called

Feasible Actuator Range Modifier (FARM) [14],[15]. This plugin oversees deploying

supervisory bounding control for dynamic models to ensure physical limitations of the

model are not exceeded. This is an additional layer of control on top of the existing

physical modeling control systems. While control is still imposed for each individual

process, FARM can identify demand signals that cannot be met within safety limits and

augments the demand to meet safety specifications. For the FORCE framework to

deploy these supervisory controllers the model needs to be exported as FMI/FMU and

integrated into the plug-and-play framework.

4) Integration of the HERON plugin: INL has been developing the Holistic Energy

Resource Optimization Network (HERON) plugin to construct workflows for solving

resource allocation problems inherent to the electrical grid. This plugin oversees the

allocation of energy resources within integrated energy systems. The idea of FORCE is to

connect HERON with FARM, RAVEN, and HYBRID to solve real world energy

allocation problems. With the work completed in FY 2020 the next step is to develop the

63

interconnection between these different platforms and ensure simulation speed is capable

of solving real world problems.

Additional investigative work is planned in order to expand the FMU capabilities within the

existing HYBRID repository framework.

10. REFERENCES

[1] C. Rabiti, A.S. Epiney, P. Talbot, J.S. Kim, S. Bragg-Sitton, A. Alfonsi, A. Yigitoglu, S.

Greenwood, S.M. Cetiner, F. Ganda, G. Maronati. September 2017. “Status Report on

Modeling and Simulation Capabilities for Nuclear-Renewable Hybrid Energy Systems.”

INL/EXT-17-43441, Idaho National Laboratory.

[2] J.S. Kim, M. McKellar, S. Bragg-Sitton, R. Boardman. October 2016. “Status Report on the

Component Models Developed in the Modelica Framework: High-Temperature Steam

Electrolysis & Gas Turbine Power Plant.” INL/EXT-16-40305, Idaho National Laboratory.

[3] J.S. Kim, K.L. Frick. May 2018. “Status Report on the Component Models Developed in the

Modelica Framework: Reverse Osmosis Desalination Plant & Thermal Energy Storage.”

INL/EXT-18-45505, Idaho National Laboratory.

[4] K.L. Frick. August 2019. “Status Report on the NuScale Module Development in the Modelica

Framework.” INL/EXT-19-55520, Idaho National Laboratory.

[5] A. Alfonsi, C. Rabiti, D. Mandelli, J. Cogliati, C. Wang, P.W. Talbot, D.P. Maljovec, C. Smith.

2016. “RAVEN Theory Manual and User Guide.” INL/EXT-16-38178, Idaho National

Laboratory.

[6] C. Rabiti, A. Alfonsi, J. Cogliati, D. Mandelli, R. Kinoshita, S. Sen, C. Wang, J. Chen. 2017.

“RAVEN User Manual.” INL/EXT-15-34123, Idaho National Laboratory.

[7] Dassault Systems. “DYMOLA Systems Engineering: Multi-Engineering Modeling and

Simulation Based on Modelica and FMI.” Accessed July 24, 2020.

https://www.3ds.com/products-services/catia/products/dymola/.

[8] M.S. Greenwood: TRANSFORM - TRANsient Simulation Framework of Reconfigurable

Models. Computer Software. https://github.com/ORNL-Modelica/TRANSFORM-Library. 07

Nov. 2017. Web. Oak Ridge National Laboratory. doi:10.11578/dc.20171109.1. Available:

https://github.com/ORNL-Modelica/TRANSFORM-Library.

[9] K. Frick, A. Alfonsi, C. Rabiti. 2020. “Hybrid User Manual.” INL/MIS-20-60624, Idaho

National Laboratory.

[10] A. Alfonsi, K. Frick, S. Greenwood, C. Rabiti. 2020. “Status on the Development of the

Infrastructure for a Flexible Modelica/RAVEN Framework for IES.” INL/EXT-20-00160,

Idaho National Laboratory.

[11] K. Frick, A. Alfonsi, C. Rabiti. 2020. “Flexible Modelica/RAVEN Framework for IES.”

INL/EXT-20-00419, Idaho National Laboratory.

[12] FMPy. 2020. “FMPy 0.2.21.” Accessed July 8, 2020. https://pypi.org/project/FMPy/.

[13] PyFMI. 2018. “PyFMI 2.5.” Accessed March 25, 2020. https://pypi.org/project/PyFMI/.

[14] H. Wang, R. Ponciroli, A. Alfonsi. Feasible Actuator Range Modifier (FARM).

https://github.com/Argonne-National-Laboratory/FARM

https://www.3ds.com/products-services/catia/products/dymola/
https://github.com/ORNL-Modelica/TRANSFORM-Library
https://pypi.org/project/FMPy/
https://pypi.org/project/PyFMI/
https://github.com/Argonne-National-Laboratory/FARM

64

[15] H. Wang, R. Ponciroli, R. Vilim, A. Alfonsi, C. Rabiti. “A Recursive Data-Driven Approach

to State Variable Selection and Digital Twin Derivation.” in 12th International Topical Meeting

on Nuclear Plant Instrumentation, Control and Human Machine Interface Technologies.

(NPIC&HMIT 2021). June 2021.

65

66

APPENDIX A – HYBRID USER MANUAL

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

APPENDIX B – SQA: SOFTWARE QUALITY ASSURANCE PLAN
(SQAP)

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance.

Laboratory-wide Template

Document ID: PLN-6274
Revision ID: 0

Effective Date: 10/01/2020

Software Quality Assurance Plan (SQAP)

HYBRID Software Quality

Assurance and

Maintenance and

Operations Plan

Andrea Alfonsi

115

HYBRID Software Quality Assurance and
Maintenance and Operations Plan

PLN-6274

Prepared by:

Andrea Alfonsi

09/01/2020

IT Project/M&O Manager Date

Reviewed by:

Konor Frick

09/01/2020

Independent Reviewer Date

Approved by:

Cristian Rabiti

09/01/2020

Asset Owner Date

116

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 1 of 26

Applicability: Plan eCR Number:
Manual:

CONTENTS

1. PURPOSE 3

1.1 HYBRID Description................................ 3

1.2 Software Lifecycle4

1.3 Assumption and Constraints 4

1.4 Deviation Policy................................4

2. REFERENCES 5

3. DEFINITIONS AND ACRONYMS6

3.1 Definitions................................6

3.2 Acronyms12

4. MANAGEMENT14

5. CONFIGURATION MANAGEMENT14

6. SUBCONTRACTOR.VENDOR 14

7. DOCUMENTATION14

7.1 Minimum Documentation Requirements 14

7.2 Other Documentation 15

8. STANDARDS, PRACTICES, CONVENTIONS, AND METRICS................................ .15

8.1 Content15

8.1.1 Software Coding Standards15
8.1.2 Commentary Standards16
8.1.3 Testing Standards and Practices 16

9. SOFTWARE REVIEWS16

10. TESTING 16

10.1 V&V Overview16

117

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 2 of 26

10.1.1 Test & V&V Objectives16
10.1.2 Master Schedule 19
10.1.3 Specific meaning of V&V activities for HYBRID software19

10.2 TYPES OF TESTS TO BE EXECUTED 19

10.3 Test Automation................................20

10.4 APPROVAL REQUIREMENTS................................21

10.5 Requirement tests21

10.6 Other tests21

10.7 TEST DEFINITION TASKS AND RESPONSIBILITIES22

11. V&V PROCESSES22

12. PROBLEM REPORTING AND CORRECTIVE ACTION23

13. TOOLS, TECHNIQUES, AND METHODOLOGIES 23

14. SUPPLIER CONTROL23

15. RECORDS COLLECTION, MAINTENANCE, AND RETENTION.............................. 23

16. TRAINING 23

17. RISK MANAGEMENT................................23

17.1 Safety Software Determination23

17.2 Quality Level Determination24

18. ASSET MAINTENANCE AND MAINTENANCE AND OPERATIONS

PLANNING 24

19. M&O Work Plans24

20. M&O ASSESSMENT AND CONTROL24

21. SUPPORTING PROCESS PLANS24

118

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 3 of 26

1. PURPOSE

Software quality assurance (SQA) is a set of activities necessary to provide adequate

confidence that a software item or product conforms to the set of functional and technical

requirements specified for that item. This plan presents the required activities to enable

consistent SQA implementation within the HYBRID Software. It provides a standardized

method of capturing software requirements, how those requirements will be

implemented, how the software will be tested, how changes to the software will be

controlled, and how software deficiencies will be handled. This Software Quality

Assurance Plan (SQAP) establishes the software Quality Assurance program for

HYBRID. It covers the periods of software development, maintenance and operations

(M&O), and retirement. It implements applicable requirements in conformance with

PDD-13610, “Software Quality Assurance”. This plan is based on the RAVEN SQA

process, documented in “PLN-5552, RAVEN and RAVEN Plug- ins Software Quality

Assurance and Maintenance and Operations Plan”. The HYBRID software process

follows the PLN-5552 and in this document, the deviations from such plan are

documented.

1.1 HYBRID Description

One of the goals of the HYBRID software/product is to assess the economic viability of

hybrid systems in a market that contains renewable energy sources (e.g. wind, solar, etc.).

The hybrid system would be a nuclear reactor that not only generates electricity, but also

provides heat to another plant that produces by-products, like hydrogen or desalinated

water. The idea is that the possibility of selling heat to a heat user absorbs (at least part

of) the volatility introduced by the renewable energy sources.

The HYBRID software/product is a container of systems/components models and

analysis workflows for the deployment of a “plug and play” framework aimed to

integrate Modelica/Dymola [see def.] with RAVEN in terms of both FMI/FMU [see def.]

construction and repository structure that aims to ease the sharing and simulation of

complex dynamic models.

HYBRID is operational within multiple projects. Ongoing support of HYBRID is

required for the purpose of adding functionality, correcting model errors and improving

the performance of the HYBRID models and analysis flows.

- HYBRID is maintained by a team of scientists/researchers, referred to herein as the

HYBRID core team (see def.). HYBRID maintenance and operations, performed by

the HYBRID core team, is an ongoing activity.

- This plan covers the maintenance of all existing and future components of HYBRID.

This includes, but is not limited to, servers, server software, user workstations,

HYBRID software, and control documents. Changes to this document will be

completed through the Electronic Change Request (eCR) process.

119

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 4 of 26

1.2 Software Lifecycle

HYBRID is using an Agile life cycle methodology. The life cycle will be

performed in an iterative manner and address the requirements, design,

implementation, testing, installation and checkout, operations and maintenance,

and retirement phases.

1.3 Assumption and Constraints

- The HYBRID core team will adhere to LWP-1303, “Management of

Unclassified Cyber Security Information Systems” and LWP-1401,

“Preparing and Releasing Scientific and Technical Information Products,”

where applicable.

- 29 USC 794d, Section 508 of the Workforce Investment Act of 1998

considerations will be made for the ability of disabled individuals to access

the information or service provided by the software.

- INL will manage the software with support from vendors (for acquired

software [see def.]) until the software is retired.

- Software vendor support agreements are maintained.

- For firmware, changes to acquired software including software updates and

security patches will be implemented by the product vendor.

- The hardware that serves HYBRID is managed by the High-Performance

Computing Group. The hardware is considered a configuration item (see def.)

for the HYBRID asset, and changes impacting the HYBRID software must be

reviewed by the HYBRID technical lead or designee; however, the

management of the hardware is outside the scope of this plan.

-

1.4 Deviation Policy

All deviations from this plan require management approval. Whether planned or

unplanned, if any deviation from this plan is necessary, the following components

will be determined:

- Identification of task affected.

- Reasons for deviation defined.

- Effects on the quality of the project.

- Time and resource constraints affected.

A deviation report will be generated, and authorization will be required.

Deviations that violate requirements must be documented within the relevant

issue.

120

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 5 of 26

2. REFERENCES

The following source documents apply to this SQAP:

• 29 USC 794d, Section 508 Workforce Investment Act of 1998

• INL/EXT-18-44465, “RAVEN User Documentation”

• ISO/IEC/IEEE 24765:2010(E), “Systems and software engineering —

Vocabulary”

• PDD-13610, “Software Quality Assurance Program.”

• PDD-13000, “Quality Assurance Program Description”

• LWP-1201, “Document Management”

• LWP-1202, “Records Management”

• LWP-1305, “Acquisition of Computer Hardware/Software Resources”

• LWP-1306, “Management of IT Asset Minimum Security Configurations,” Rev.

1, December 23, 2013.

• LWP-1401, “Preparing and Releasing Scientific & Technical Information

Products”

• LWP-4001, “Material Acquisitions”

• LWP-4002, “Service Acquisitions”

• PLN-5552, “RAVEN and RAVEN Plug- ins Software Quality Assurance and

Maintenance and Operations Plan”

• PLN-4653, “INL Records Management Plan”

• SDD-561, “HYBRID Software Design Description (SDD)”

• SPC-2990, “HYBRID Software Requirements Specification (SRS) and

Traceability Matrix”

121

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 6 of 26

3. DEFINITIONS AND ACRONYMS

This section defines, or provides the definition of, all terms and acronyms required to

properly understand this plan.

3.1 Definitions

Acquired software. Software generally supplied through basic procurements, two-

party agreements, or other contractual arrangements. Acquired software includes

commercial off-the-shelf software, support software such as operating systems,

database management systems, compilers, software development tools, and

commercial calculational software and spreadsheet tools (e.g. Microsoft’s Excel).

Downloadable software that is available at no cost to the user (referred to as

freeware) is also considered acquired software. Firmware is acquired software.

Firmware is usually provided by a hardware supplier through the procurement

process and cannot be modified after receipt.

Agile development. Agile development is an approach to software development

under which requirements and solutions evolve through the collaborative effort of

self-organizing and cross-functional teams and their customer(s)/end user(s). It

prescribes adaptive planning, continuous development, early delivery, and

continual improvement, and it encourages rapid and flexible response to change.

Anomaly. Anything observed in the documentation or operation of software that

deviates from expectations based on previously verified software products or

reference documents.

Baseline. A specification or product that has been formally reviewed and agreed

upon, that thereafter serves as the basis for use and further development, and that

can be changed only by using an approved change control process. [ASME

NQA-1-2008 with the NQA-1a-2009 addenda]

Change control. An element of configuration management, consisting of the

evaluation, coordination, approval or disapproval, and implementation of changes

to configuration items (CIs see def.) after formal establishment of their

configuration identification. [ISO/IEC/IEEE 24765:2010(E)]

122

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 7 of 26

Change control board (CCB). The group by which a change is proposed,

evaluated, approved or rejected, scheduled, and tracked. This board is also

responsible for evaluating and approving or disapproving proposed changes to

configuration items (CIs) and implementation of approved changes when

required.

Change requests (CRs). CRs can be initiated by anyone, including off site users,

and can be used for maintenance (fine-tuning and problem resolving), new

development, and enhancements, or can be used to report program errors and

problems.

Change request log. A log that provides a listing of all the change requests and

the change request status used for application software, system software, and

hardware configuration control.

Commercial off-the-shelf. (COTS) Usually refers to software purchased from a

vendor “as-is” with minimal customization or configuration options that meets a

requirement.

Configuration Control. An element of configuration management, consisting of

the evaluation, coordination, approval or disapproval, and implementation of

changes to configuration items after formal establishment of their configuration

identification. [ISO/IEC/IEEE 24765:2010(E)]

Configuration identification. An element of configuration management,

consisting of selecting the configuration items (see def.) for a system and

recording their functional and physical characteristics in technical documentation.

Configuration item (CI). An item or aggregation of hardware or software

(including documentation) or both that is designed to be managed as a single

entity (ISO/IEC/IEEE 24765:2010(E) edited).

Configuration management. A discipline applying technical and administrative

direction and surveillance to identify and document the functional and physical

characteristics of a configuration item (see def.), control changes to those

characteristics, record and report change processing and implementation status,

and verify compliance with specified requirements (ISO/IEC/IEEE

24765:2010[E]).

Configuration Management (see def.) consists of activities to control and manage

changes to items that have a baseline (see def.). It includes the process of

identifying the configuration items (CIs) (see def.) in a system, controlling the

release and change of these items, and recording and reporting the status of the

CIs and their associated change requests.

123

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 8 of 26

Continuous Integration System (CIS). A system, linked to a central version

control repository, such as GitHub and GitLab (see def.), aimed to automatically

build and test a targeted software. Examples are CIVET, Jenkins, and GitLab

Continuous Integration.

Custom-built IT assets. Information technology (IT) assets designed, developed,

or modified internally or by a qualified subcontractor through the procurement

process. Examples include custom-developed (see def.) or customized software,

spreadsheet, and calculation and analysis applications (e.g., computer models), the

implementation of a new network infrastructure or IT technology (e.g., Gmail,

Internet Protocol Version 6, Internet Explorer 9). [Developed for internal

laboratory use]

Custom-developed software. Software built specifically for a DOE application or to

support the same function for a related government organization. It may be

developed by DOE or one of its M&O contractors or contracted with a qualified

software company through the procurement process. Examples of custom-

developed software include material inventory and tracking database applications,

accident consequence applications, control system applications, and embedded

custom-developed software that controls a hardware device.

Defect. An error, fault or failure in a computer program or system that causes it to

produce an incorrect or unexpected result, or to behave in unintended ways.

Doxygen. Standard tool for generating documentation from annotated C, C++,

Fortran and Python sources.

Dymola. Dymola is a commercial modeling and simulation environment based on

the open Modelica modeling language, Developed by the European company

Dassault Systèmes.

Electronic Document Management System (EDMS). System approved for long-

term storage, management, and maintenance of electronic and hardcopy records.

Enterprise Architecture (EA) Repository. An Oracle database that houses

information about software applications and servers and is the source for the INL

data dictionary. The applications are related to the management system business

functions it supports or implements. EA is the repository for the technology

(e.g., software/hardware) used to construct and implement software applications.

EA contains links to the software documentation stored in EDMS (see def.) and

includes a list of software owners.

FMI. The Functional Mock-up Interface (or FMI) defines a standardized interface

to be used in computer simulations to develop complex cyber-physical systems.

124

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 9 of 26

FMU. Based on an FMI, the FMU is an executable called a Functional Mock-up

Unit (FMU), which is “driven” by an FMI. A simulation environment can use the

FMI to create an instance of the FMU and simulate it together with other FMUs

or models native to the simulation environment.

GitHub. A web-based revision control hosting service for software development

and code sharing. GitHub provides additional tools such as documentation

generation, issue tracking, Wikis, nested task-lists within files, etc.

GitLab. A web-based revision control hosting service for software development

and code sharing similar to GitHub. The CIS (see def.) connects to both the

external and internal GitHub/GitLab to perform software builds.

Issue. Issues can be initiated by anyone, including off site users, and are used for

maintenance (fine-tuning and problem resolving), new development,

enhancements, or can be used to report program errors and problems.

Issue (GitHub). As defined for the GitHub environment, issues are suggested

improvements, tasks, or questions related to the repository. Issues can be created

by anyone (for public repositories) and are moderated by repository collaborators.

Each issue contains its own discussion forum and can be labeled and assigned to a

user/developer.

Major Change. A revision to software that, in the best judgment of authorizing

personnel, has the potential to compromise the accuracy/validity of the output

data, and as a result, could diminish the margin of safety to the public, worker, or

environment.

Method. A reasonably complete set of rules and criteria that establish a precise

and repeatable way of performing a task and arriving at a desired result. [The

Configuration Management Manual Guideline for Improving the Software

Process, Carnegie Mellon University Software Engineering Institute, 1995]

Minor Change. A revision to software that, in the best judgment of authorizing

personnel, will not compromise the accuracy/validity of the output data and will

not diminish the margin of safety to the public, worker, or environment.

Modelica. Object-oriented, declarative, multi-domain modeling language for

component-oriented modeling of complex systems, e.g., systems containing

mechanical, electrical, electronic, hydraulic, thermal, control, electric power or

process-oriented subcomponents.

Open source. Denoting software for which the original source code is made freely

available and may be redistributed and modified.

125

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 10 of 26

Pull requests. Pull requests can be initiated by anyone, including off-site users, and

are used for maintenance (fine-tuning and problem resolving), new development,

enhancements, or can be used to address program errors and problems. Pull

requests allow informing others about changes pushed to a repository on a version

control system (see def.). Once a pull request is sent, interested parties can review

the set of changes, discuss potential modifications, and even push follow-up

commits if necessary, as well as integrate changes into the maintained code.

Quality grade. The grade applied to the level of quality activities to be applied to

the specific task or activity. Current quality grades are Nuclear Use QL and

Commercial Use Quality Levels (QLs) High, Medium, and Low.

RAVEN core team. INL personnel who are in charge of the development of the

RAVEN framework or software applications/extensions/plugins that are based on

the RAVEN framework. A list of the current components of the RAVEN core

team can be found at https://github.com/idaholab/raven/wiki/AboutUs#raven-

core-team

HYBRID core team. INL personnel who are in charge of the development of the

HYBRID software applications/extensions that are based on the HYBRID

software. A list of the current components of the HYBRID core team can be

found at https://github.com/idaholab/HYBRID/-/wikis/About-Us

RAVEN Software. Open source software that resides in a public repository

(GitHub) that provides the capabilities needed to perform Uncertainty

Quantification, Probabilistic Risk Assessment, Data Analysis, Validation and

Parameter Optimization.

HYBRID Software. Collection of software/models/analysis workflows that resides

in a public repository (GitHub) that provides the for the deployment of a “plug

and play” framework aimed to integrate Modelica/Dymola with RAVEN in terms

of both FMI/FMU construction and repository structure that aims to ease the

sharing and simulation of complex dynamic models.

Regression testing. Selective retesting of a system or component to verify that

modifications have not caused unintended effects and that the system or component

still complies with its specified requirements.

Retirement. Permanent removal of an asset (e.g., system or component) and

associated support from its operational environment.

[ISO/IEC/IEEE Std 24765-2010 edited]

Safety function. The performance of an item or service necessary to achieve safe,

reliable, and effective utilization of nuclear energy and nuclear material processing.

For INL, safety functions are identified and defined in a formal safety basis or

126

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 11 of 26

commitment document as credited for achieving nuclear safety (e.g., safety

structures, systems, and components; safety significant; safety class; safety related;

or important to safety) (ASME NQA-1-2008 with the NQA-1a-2009 addenda

edited).

Software. Computer programs and associated documentation and data pertaining

to the operation of a computer system and includes application software and

support software.

Software life cycle. The activities that comprise evolution of software from

conception to retirement. The software life cycle typically includes the activities

associated with requirements, design, implementation, test, installation, operation,

maintenance, and retirement.

Software quality assurance. All actions that provide adequate confidence that

software quality is achieved.

Software tool. A computer program used in development, testing, analysis, or

maintenance of a program or its documentation. Examples include comparators,

cross-reference generators, compilers, computer-aided software-engineering tools,

configuration and code management software, flowcharters, monitor test case

generators, and timing analyzers.

Support software. Software tools (see def.) and system software (see def.).

System software. Software designed to facilitate operation and maintenance of a

computer system and its associated programs (e.g., operating systems and

utilities).

System testing. Testing conducted on a complete, integrated system to evaluate

the system’s compliance with its specified requirements.

Task (GitHub). A suggested improvement or feature enhancement.

Test case. (1) A set of test inputs, execution conditions, and expected results

developed for a particular objective, such as to exercise a particular program path

or to verify compliance with a specific requirement. (2) Documentation

specifying inputs, predicted results, and a set of execution conditions for a test

item.

User documentation. Instructions for use describing the capabilities and intended

use of the software within specified limits. May also include a theory manual,

when relevant.

127

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 12 of 26

Validation. Confirmation, through the provision of objective evidence (e.g.,

acceptance test), that the requirements for a specific intended use or application

have been fulfilled. [ISO/IEC/IEEE 24765:2010(E) edited].

Verification. (1) The process of evaluating a system or component to determine

whether the products of a given development phase satisfy the conditions imposed

at the start of that phase. (2) Formal proof of program correctness (e.g.,

requirements, design, implementation reviews, system tests).

[ISO/IEC/IEEE 24765:2010(E) edited]

Version Control System. It is the system aimed to support the management of

changes to files, in general, and computer programs, in particular. Changes are

usually identified by a number, letter code or unique alphanumeric identifiers,

termed the "revision number", "revision level", or simply "revision". Each

revision is associated with a timestamp and the person making the change.

Revisions can be compared, restored, and with some types of files, merged.

Examples of Version Control Systems are GitHub and GitLab (see def.)

3.2 Acronyms

ASME American Society of Mechanical Engineers

BEA Battelle Energy Alliance

CCB Change Control Board

CFR Code of Federal Regulations

CI Configuration Item

CIS Continuous Integration System

CM Configuration Management

CMP Configuration Management Plan

COTS Commercial off-the-shelf software

CR Change Request

CSV Comma Separated Value

DOE Department of Energy

EA Enterprise Architecture

128

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 13 of 26

EDMS Electronic Document Management System

FMI Functional Mock-up Interface

FMU Functional Mock-up Unit

IAS Integrated Assessment System

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

INL Idaho National Laboratory

ISMS Integrated Safety Management System

ISO International Organization for Standardization

IT Information Technology

LST List

LWP Lab-wide Procedure

M&O Maintenance and Operations

NQA Nuclear Quality Assurance

POSIX Portable Operating System Interface

PRA Probabilistic Risk Assessment

QA Quality Assurance

QL Quality Level

QLD Quality Level Determination

RTM Requirement Traceability Matrix

RAVEN Risk Analysis and Virtual ENvironment

SRS Software Requirements Specification

SSD Safety Software Determination

SQA Software Quality Assurance

129

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 14 of 26

SQAP Software Quality Assurance Plan

USGCB U.S. Government Configuration Baseline

V&V Verification and Validation

4. MANAGEMENT

The MANAGEMENT plan of the HYBRID Software fully adheres with the one spelled

out in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance and

Maintenance and Operations Plan” (replacing the word RAVEN with HYBRID).

5. CONFIGURATION MANAGEMENT

The CONFIGURATION MANAGEMENT plan of the HYBRID Software fully adheres

with the one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins Software

Quality Assurance and Maintenance and Operations Plan” (replacing the word RAVEN

with HYBRID). The HYBRID configuration items’ list can be found in LST-1296.

6. SUBCONTRACTOR.VENDOR

No subcontractors/vendors activities are envisioned for HYBRID Software. In case of a

new strategy, involving subcontractors, is defined, this plan will be revised.

7. DOCUMENTATION

The purpose of this section is to define the minimum documentation required to properly

implement the SQA requirements. At all times during the life cycle of HYBRID, the

following documents will be maintained as part of the Asset Portfolio.

7.1 Minimum Documentation Requirements

As a minimum, the following documentation is required for the HYBRID

software. These documents are managed as records in accordance with Section

15, “RECORDS COLLECTION, MAINTENANCE, AND RETENTION.”

The following documentation is required as a minimum:

Document Record Location ID

Software Quality Assurance Plan
Electronic Document

Management System (EDMS)
PLN-6274

Software Test Plan and

Verification & Validation
GitHub PLN-6274

130

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 15 of 26

Software Requirements

Specification and Traceability

Matrix

GitHub SPC- 2990

Software Design Description GitHub SDD-561

User Documentation (see def.) GitHub
INL/MIS-20-60624

7.2 Other Documentation

In addition to the above documents, the following are created during the

procurement and baselining of the project. These may be used in support of

Change Control Request implementation and M&O activities.

• SSD-000753, “HYBRID Safety Software Determination”

• QLD, “HYBRID Quality Level Determination”

• HYBRID CTM Entry: 3C9B336C-8262-4790-AEBD-582B1BD85CF5

All documents will be managed according to LWP-1201, “Document

Management.”

All records generated as part of this plan will be processed and managed

according to LWP-1202, “Records Management.”

8. STANDARDS, PRACTICES, CONVENTIONS, AND METRICS

8.1 Content

The standards for HYBRID are maintained/recorded in the HYBRID GitHub

repository (Wiki section). Any developer of the HYBRID software need to be

aware of the standards and to follow the development guidelines.

The HYBRID standards evolve around the following macro-areas:

- Software Coding Standards

- Commentary Standards

- Testing Standards and Practices

8.1.1 Software Coding Standards

131

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 16 of 26

The HYBRID software imposes a coding standard on all source code

within the repository. This standard is publicly maintained on the

HYBRID GitHub repository wiki website

(https://github.com/idaholab/HYBRID/-/wikis/HYBRID-Code-Standards

) and enforced through the continuous integration testing system.

8.1.2 Commentary Standards

The HYBRID software imposes a commentary standard on all source

code within the repository. The standard is aimed to fully describe any

module/method in the source code, guaranteeing the automatic

generation of software documentation via doxygen (see def.). This

standard is publicly maintained on the HYBRID GitHub repository wiki

website (https://github.com/idaholab/HYBRID/-/wikis/Hybrid-Software-

Commentary-Standard) and enforced through the continuous integration

testing system.

8.1.3 Testing Standards and Practices

The HYBRID software imposes a testing standard and practices on all

the capabilities/methods of the HYBRID software. This standard is

publicly maintained on the HYBRID GitHub repository wiki website

(https://github.com/idaholab/HYBRID/-/wikis/HYBRID-Testing-

Standards-and-Practices) and enforced through the review process by a

member of the CCB.

9. SOFTWARE REVIEWS

The SOFTWARE REVIEWS process of the HYBRID Software fully adheres with the

one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality

Assurance and Maintenance and Operations Plan” (replacing the word RAVEN with

HYBRID).

10. TESTING

The goal of software validation (see def.) is to confirm that the requirements for a

specific intended end use have been fulfilled. Software verification (see def.) evaluates a

system or component to confirm that specified conditions have been satisfied and

provides formal proof of correctness.

10.1 V&V Overview

10.1.1 Test & V&V Objectives

Test procedures or plans will specify the following as applicable:

132

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 17 of 26

• required tests and test sequence

• required ranges of input parameters

• identification of the stages at which testing is required

• criteria for establishing test cases

• requirements for testing logic branches

• requirements for hardware integration

• anticipated output values

• acceptance criteria

• reports, records, standard formatting, and conventions

• performance testing

Any developer, including externals, are responsible for ensuring the creation of a

test case (see def.) that covers the new capability or code change. The CCB (any

of its member not directly involved in the CR) is responsible, through the help of

the Review Check Lists (see def.), for verifying that an appropriate test case is

provided, and passes based on the supplied acceptance criteria. This verification is

performed for any CR and failing to meet these requirements shall conclude in

rejecting the CR by the CCB member/reviewer. The process for handling CRs that

modify or add requirements is discussed in Section 5, Configuration Management

Activities.

HYBRID is open source (see def.) software that is maintained and stored in

GitHub (see def.), a public repository. In order to align the testing and V&V

activities of the software with the nature of the Agile development process (see

def.), the verification of the software has been designed in a multi-stage

automated testing suite, using the Continuous Integration System (CIS) (see def.)

in GitHub.

The main scope of the automated testing is to guarantee that any capability is

properly tested and that new addition to the software do not impact the

functionalities of the already-deployed capabilities.

Four types of testing, unit, integration, system, and deployment, are covered by

the HYBRID software.

133

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 18 of 26

The project manager/technical leader oversees the testing and verification and

validation (V&V) activities, including the analysis of test coverage and the

determination of when new tests are necessary. The test coverage analysis is

performed during the code review activities conducted by the HYBRID core team

(see def.), and it is determined at that step in the process if one or more new tests

needs to be created. V&V activities are distributed among the HYBRID core team.

Every time a new development or capability is performed by a software

developer, the following shall be determined:

• Required test activities and method of documentation (e.g., test plans,

procedures, checklists, etc.);

• Required support software (see def.) (e.g., automated test scripts, fault

insertion tools, etc.);

• Type and extent of required testing; and

• Required reviews and approvals.

A component (or more) of the change control board (CCB) (see def.), not being

part of the development, shall review the correct documentation of the tests and

ensure that the documentation includes approved requirements (when necessary)

that have valid acceptance criteria. This documentation may include:

• Documentation of the tests including acceptance criteria. The

documentation procedure is defined in the HYBRID wiki page

(https://github.com/idaholab/HYBRID/-/wikis/Developing-Regression-

Tests)

• Software Requirements Specification or equivalent requirements

document;

• Requirements Traceability Matrix;

• Software Design Description for guidance on testing methodologies and

the operating environment (i.e., software, firmware, and hardware

elements) to be used during testing;

• User documentation (see def.)

The CIS will verify that the provided documentation ensures that the software

demonstrates adherence to the documented requirements and that the software

produces correct results.

134

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 19 of 26

10.1.2 Master Schedule

The V&V tasks (as captured in the automated tests) are executed

automatically for every change to HYBRID software (i.e. source code).

At several steps during the change commit process, automated tests are

executed.

10.1.3 Specific meaning of V&V activities for HYBRID software

The HYBRID software contains modelica models that will be, if

available, compared with experimental results.

10.2 TYPES OF TESTS TO BE EXECUTED

Tests are defined using an input file syntax, which specifies what the test should do, the

inputs, and the post conditions for determining test success or failure; and assuring that

the software produces correct results. The guidelines for the creation of a new test are

reported in the HYBRID wiki page (https://github.com/idaholab/HYBRID/-

/wikis/Developing-Regression-Tests). Any test case that is connected with a requirement

or modify/add a new requirement shall be tagged with the associated requirement ID.

Acceptance Criteria for each test is defined by the Test type (defined below).

The collection of Test types ensure that the software properly handles abnormal

conditions and events as well as credible failures, does not perform adverse unintended

functions, and does not degrade the system either by itself, or in combination with other

functions or configuration items.

The Test types and acceptance criteria for each are as follows:

- CSVdiff: A test case that runs a simulation, terminates without error, and

produces a previously defined comma separated value solution within a

predefined tolerance (usually to at least single precision accuracy or better). The

order of data in the CSV must exactly match the reference solution file.

- UnorderedCSVDiffer: A test case that runs a simulation, terminates without error,

and produces a previously defined comma separated value solution within a

predefined tolerance (usually to at least single precision accuracy or better). The

order of data (rows) in the CSV can be different with respect the previously

defined file. Note: This Test is generally used when multiple parallel executions

of an underneath model are performed, and the collection of the data can be

unsynchronized depending on the latency of the network/machine. This test is

only allowed if a parallel test is created.

- TextDiff: A test case that runs a simulation, terminates without error, and

produces a previously defined text file that matches a reference solution file.

135

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 20 of 26

- XMLDiff: A test case that runs a simulation, terminates without error, and

produces a previously defined Extensible Markup Language (XML) solution

within a predefined tolerance (usually to at least single precision accuracy or

better).

- RAVENImageDiff: A test case that runs a simulation, terminates without error,

and produces a previously defined image or picture within a predefined tolerance

(in terms of pixel difference).

- RavenErrors: A test case that runs and produces a specified console output or

output pattern and terminates with an expected error code or message.

- DymolaMatDiff: A test case that runs a simulation, terminates without error, and

produces a previously defined “. mat” solution file within a predefined tolerance

(usually to at least single precision accuracy or better).

- HPCinteraction: A test case that runs a simulation in a High-Performance

Computing System using its native Job Scheduler and Workload manager (e.g.

Portable Batch System – PBS), terminates without error.

In addition to the above reported Test types, for any CR the following tests are

performed:

- Documentation Test: The CIS tests that the User Documentation and SQA

Documentation can correctly be generated.

- Code Standard Validation: The CIS tests that all the source code is compliant with

the RAVEN software coding standards (e.g. source code syntax, formats,

documentation, etc.).

- Code Coverage: The CIS tests that at least the 80% of the source code is tested by

the test suite.

10.3 Test Automation

Testing is performed automatically as part of the CIS process when a user commits

a change to the repository. The automated tests that are executed at subsequent

steps in the process vary in scope and type and are described in Table 2. Tests of

the framework across multiple platforms (operative systems and versions) are

executed with each pull request (see def.).

In order to pass acceptance testing, all test cases are expected to pass under the

environments identified in the configuration items for HYBRID software.

136

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 21 of 26

Use of the automated tests is integrated directly into GitHub, and as such does not

require additional training other than general familiarity with performing a pull

request in GitHub.

Results from each test execution are maintained in the CIS database, in an

approved records repository along with results from the timing executions and

code coverage.

10.4 APPROVAL REQUIREMENTS

The HYBRID software relies on a heavy automation of the verification and testing of any

new or modified capability. This approach is required for the nature of the Agile

development process. As mentioned in the previous section, any CR in the source code

needs to be accompanied with a new (or modified) test to assess the correctness of the

code and its functionality.

Depending of the type of test case that is added or modified, two different approval

processes are followed:

10.5 Requirement tests

This category is about to test any functionality that is linked to any new or

assessed requirements.

Table 3 - Requirement tests' responsibilities.

Test Case Reviewer(s): Chair of the CCB, Technical Leader and

Independent Reviewer (Member of the CCB)

Test Result Reviewer and Approver: Chair of the CCB or Technical Leader and

Independent Reviewer (Member of the CCB)

Acceptance Test Case Reviewer(s): Chair of the CCB, Technical Leader and

Independent Reviewer (Member of the CCB)

Acceptance Result Reviewer(s): Automated CIS

Acceptance Result Approver: Automated CIS

10.6 Other tests

This category is about to test any functionality that is not linked to any specific

requirement (e.g. infrastructure tests, verification tests, etc.).

137

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 22 of 26

Table 4 - Other tests' responsibilities

Test Case Reviewer(s): Independent Reviewer (Member of the CCB)

Test Result Reviewer and Approver: Independent Reviewer (Member of the CCB)

Acceptance Test Case Reviewer(s): Independent Reviewer (Member of the CCB)

Acceptance Result Reviewer(s): Automated CIS

Acceptance Result Approver: Automated CIS

10.7 TEST DEFINITION TASKS AND RESPONSIBILITIES

This section summarizes the tasks and associated roles in the definition of the test cases

and their approval.

Table 5 - Tasks and responsibilities for tests creation.

Tasks Responsibility

1. Complete programming and test

creation

Developer of the proposed CR

2. Test data creation Developer of the proposed CR

3. Set up test environment Automated via CIS

4. Migrate services to test environment Automated via CIS

5. Set up test database Automated via CIS

6. Prepare test cases Developer of the CR

7. Conduct test, record results, and

communicate to the developers

Automated via CIS

8. Make corrections and updates to the

processes

Developer of the CR

9. Review and approve final results of

the test

Independent reviewer part of the CCB and

Technical Leader (or Chair of CCB) in case

of requirement test.

Note: The above steps need to be conducted for every type of testing

11. V&V PROCESSES

The V&V PROCESSES of the HYBRID Software fully adheres with the one spelled out

in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance and

Maintenance and Operations Plan” (replacing the word RAVEN with HYBRID).

138

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID SOFTWARE QUALITY

ASSURANCE & M&O PLAN

Identifier:

Revision:

Effective Date:

PLN-6274

 0

 10/01/2020

Page: 23 of 26

12. PROBLEM REPORTING AND CORRECTIVE ACTION

The PROBLEM REPORTING AND CORRECTIVE ACTION of the HYBRID Software

fully adheres with the one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins

Software Quality Assurance and Maintenance and Operations Plan” (replacing the word

RAVEN with HYBRID).

13. TOOLS, TECHNIQUES, AND METHODOLOGIES

The TOOLS, TECHNIQUES, AND METHODOLOGIES of the HYBRID Software fully

adheres with the one spelled out in the PLN-5552, “RAVEN and RAVEN Plug-ins

Software Quality Assurance and Maintenance and Operations Plan” (replacing the word

RAVEN with HYBRID).

14. SUPPLIER CONTROL

No subcontractors/vendors activities are envisioned for HYBRID. In case of a new

strategy, involving subcontractors, is defined, this plan will be revised.

15. RECORDS COLLECTION, MAINTENANCE, AND RETENTION

The RECORD COLLECTION, MAINTENANCE, AND RETENTION process of the

HYBRID Software fully adheres with the one spelled out in the PLN-5552, “RAVEN and

RAVEN Plug-ins Software Quality Assurance and Maintenance and Operations Plan”

(replacing the word RAVEN with HYBRID).

16. TRAINING

The TRAINING process of the HYBRID Software fully adheres with the one spelled out

in the PLN-5552, “RAVEN and RAVEN Plug-ins Software Quality Assurance and

Maintenance and Operations Plan” (replacing the word RAVEN with HYBRID).

17. RISK MANAGEMENT

The risk analysis for each application is documented on the safety software determination

(SSD) and quality level determination (QLD). The SSD and QLD are identified in the EA

repository for each individual application. Risks associated with the HYBRID software

are controlled via the rigor implemented in requirements identification, testing,

verification and validation, and change control processes.

17.1 Safety Software Determination

The SSD documents the decision basis as to why a software application is or is

not safety software. The record copy is maintained within the company approved

139

140

APPENDIX C – SQA: SOFTWARE DESIGN DESCRIPTION (SDD)

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

APPENDIX D – SQA: HYBRID SOFTWARE REQUIREMENTS
SPECIFICATION AND TRACEABILITY MATRIX (SPC)

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

APPENDIX E – SQA: HYBRID CONFIGURATION ITEM LIST

The INL is a U.S. Department of Energy National Laboratory
operated by Battelle Energy Alliance.

Document ID: LST-1296

Revision ID: 0

Effective Date: 10/01/2020

List

HYBRID Configuration

Items List

Andrea Alfonsi

186

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID CONFIGURATION ITEMS LIST

Identifier:

Revision:

Effective Date:

LST-1296

 1

 10/01/2020 Page: 2 of 6

Applicability: Configuration Items List eCR Number:

Manual:

REVISION LOG

Rev. Date Affected Pages Revision Description

0 09/15/2020 All Creation of the Configuration Items List

187

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID CONFIGURATION ITEMS LIST

Identifier:

Revision:

Effective Date:

LST-1296

 1

 10/01/2020 Page: 3 of 6

CONTENTS

1. PURPOSE 4

2. SCOPE4

3. RESPONSIBILITIES4

4. LIST4

4.01 Software, Hardware, and Documentation4

188

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID CONFIGURATION ITEMS LIST

Identifier:

Revision:

Effective Date:

LST-1296

 1

 10/01/2020 Page: 4 of 6

1. PURPOSE

This document identifies all HYBRID Software configuration items (CIs) (see def.). This

document also identifies the level designation needed to modify CIs that can potentially

affect the ability of HYBRID Software to comply with NQA-1.

2. SCOPE

This list is intended to identify all CIs for HYBRID Software, to provide a document to

submit into the CTM (https://ctm.inl.gov) repository, and an aid to identify how severe a

change to HYBRID Software will be.

3. RESPONSIBILITIES

The Asset Owner is responsible for maintaining this list and, when necessary, updating the

EA repository when the configuration items list changes.

The Asset Owner is also responsible for maintaining configuration management in

accordance with PLN-6274, “HYBRID Software Quality Assurance and Maintenance and

Operations Plan.”

4. LIST

4.01 Software, Hardware, and Documentation

189

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID CONFIGURATION ITEMS LIST

Identifier:

Revision:

Effective Date:

LST-1296

 1

 10/01/2020 Page: 5 of 6

Table 1. Software, Hardware, and Documentation

Configuration

Item

Component Description Repository/Location

Application

Source Code

HYBRID Software

Source Code and tools for

HYBRID Software

GITHUB

(https://github.com/idaholab/

HYBRID)

 RAVEN Source Code for the RAVEN

code. The HYBRID Software

requires RAVEN for some

workflows to be functional.

GITHUB

(https://github.com/idaholab/

raven)

System

Software

Modelica language
HYBRID Software modeling

language (Current versions

are maintained in the CTM

repository)

Capabilities ＆ Technology

Management (CTM)

(3C9B336C-8262-4790-

AEBD-582B1BD85CF5

 Python 3.x
HYBRID Software workflow

language (Current versions

are maintained in the CTM

repository)

Capabilities ＆ Technology

Management (CTM) (UUID:

3C9B336C-8262-4790-

AEBD-582B1BD85CF5)

 Unix-compatible

systems

Any compatible Unix system

(or Unix-like)

N/A

Support

Software

GITHUB CI Continuous Integration,

Verification, Enhancement,

and Testing. This is the

continuous integration system

used by TEAL for automatic

testing.

GITHUB

Installed in all the Regression

Automatic Test Machines

(Test Servers)

Hardware Test Servers These servers are used to test

the HYBRID Software

functionality. It will use a

“snapshot” of live data to

perform the tests. If testing

on the server fails, that

version of HYBRID Software

is sent back to the

Development Server for

further configuration.

(Complete and up-to-date list

of servers is maintained in

CTM repository)

General Purpose Enclave

EROB

190

 Form 412.09 (Rev. 10)

 Idaho National Laboratory

HYBRID CONFIGURATION ITEMS LIST

Identifier:

Revision:

Effective Date:

LST-1296

 1

 10/01/2020 Page: 6 of 6

 Workstations

Laptops

Personal Computer

These consist of computer

terminals that the end users

use to access the software.

N/A

Documentation SDD-000753 HYBRID Safety Software

Determination

EDMS

 ALL-XXXX HYBRID Quality Level

Determination

EDMS

 UUID: CE17AF70-

BAB9-46E6-9BB8-

74484B7F1791

TEAL Capabilities ＆

Technology Management

(CTM)

EDMS

 PLN-6274 HYBRID Software Quality

Assurance Plan

EDMS

 PLN-6274 HYBRID Configuration

Management Plan

EDMS

 PLN-6274 HYBRID Software Test Plan

and V&V

EDMS

 PLN-6274 HYBRID Asset Maintenance

Plan

EDMS

 SPC-2990 HYBRID Software

Requirements Specification

and Traceability Matrix

EDMS

 SDD-561 HYBRID Software Design

Description

EDMS

 SPC-2990 HYBRID Software

Requirements Specification

and Traceability Matrix

EDMS

 INL/MIS-20-60624 HYBRID User Manual GITHUB

	36329
	1. INTRODUCTION
	2. FUNCTIONAL MOCK-UP INTERFACES AND UNITS
	2.1 Co-simulation
	2.2 Model Exchange
	2.3 Advantages of Each Protocol

	3. MODELICA TO FMU ADAPTATION
	3.1 Adaptors
	Fluid Port Adaptors
	Thermal Port Adaptors
	Electrical Port Adaptors

	3.2 FMI Construction Guide
	Model Preparation
	Adaptors
	Export
	Import
	Simulation

	3.3 Turbine Replacement Example

	4. HYBRID REPOSITORY
	5. DEPLOYMENT OF A RAVEN FMI/FMU DRIVER
	5.1 RAVEN Introduction
	5.2 RAVEN Models

	6. DEPLOYMENT OF RAVEN FMI/FMU EXPORTER FOR AI-BASED ANALYSIS ACCELLERATIONS
	6.1 RAVEN AI construction
	6.2 Development of FMI/FMU exporting capabilities for RAVEN AI
	6.3 Future Extension of the FMI/FMU Exporter to the RAVEN Hybrid Model

	7. Integrated Energy Park Demonstration Case
	7.1 FMI/FMU Creation and Use within Dymola
	7.2 Creation of Surrogate Using RAVEN
	7.3 Comparison of Results

	8. CONCLUSION
	9. FUTURE WORK
	10. REFERENCES
	APPENDIX A – HYBRID USER MANUAL
	APPENDIX B – SQA: SOFTWARE QUALITY ASSURANCE PLAN (SQAP)
	APPENDIX C – SQA: SOFTWARE DESIGN DESCRIPTION (SDD)
	APPENDIX D – SQA: HYBRID SOFTWARE REQUIREMENTS SPECIFICATION AND TRACEABILITY MATRIX (SPC)
	APPENDIX E – SQA: HYBRID CONFIGURATION ITEM LIST

